데모¶
라이브러리 import 및 설정¶
%reload_ext autoreload
%autoreload 2
%matplotlib inline
from hyperopt import STATUS_OK, Trials, hp, space_eval, tpe, fmin
import lightgbm as lgb
from matplotlib import pyplot as plt
from matplotlib import rcParams
import numpy as np
from pathlib import Path
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.model_selection import StratifiedKFold, train_test_split
import seaborn as sns
import warnings
rcParams['figure.figsize'] = (16, 8)
plt.style.use('fivethirtyeight')
pd.set_option('max_columns', 100)
pd.set_option("display.precision", 4)
warnings.simplefilter('ignore')
학습데이터 로드¶
03-pandas-eda.ipynb에서 생성한 feature.csv
피처파일 사용
data_dir = Path('../data/dacon-dku')
feature_dir = Path('../build/feature')
val_dir = Path('../build/val')
tst_dir = Path('../build/tst')
sub_dir = Path('../build/sub')
trn_file = data_dir / 'train.csv'
tst_file = data_dir / 'test.csv'
sample_file = data_dir / 'sample_submission.csv'
target_col = 'class'
n_fold = 5
n_class = 3
seed = 42
algo_name = 'lgb_hyperopt'
feature_name = 'feature'
model_name = f'{algo_name}_{feature_name}'
feature_file = feature_dir / f'{feature_name}.csv'
p_val_file = val_dir / f'{model_name}.val.csv'
p_tst_file = tst_dir / f'{model_name}.tst.csv'
sub_file = sub_dir / f'{model_name}.csv'
df = pd.read_csv(feature_file, index_col=0)
print(df.shape)
df.head()
(400000, 20)
z | redshift | dered_u | dered_g | dered_r | dered_i | dered_z | nObserve | airmass_u | class | d_dered_u | d_dered_g | d_dered_r | d_dered_i | d_dered_z | d_dered_ig | d_dered_zg | d_dered_rz | d_dered_iz | d_obs_det | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||||||||
0 | 16.9396 | -8.1086e-05 | 23.1243 | 20.2578 | 18.9551 | 17.6321 | 16.9089 | 2.9444 | 1.1898 | 0.0 | -0.1397 | -0.0790 | -0.0544 | -0.0403 | -0.0307 | -2.6257 | -3.3488 | 2.0462 | 0.7232 | -15.0556 |
1 | 13.1689 | 4.5061e-03 | 14.9664 | 14.0045 | 13.4114 | 13.2363 | 13.1347 | 0.6931 | 1.2533 | 1.0 | -0.0857 | -0.0574 | -0.0410 | -0.0322 | -0.0343 | -0.7683 | -0.8698 | 0.2767 | 0.1016 | -0.3069 |
2 | 15.3500 | 4.7198e-04 | 16.6076 | 15.6866 | 15.4400 | 15.3217 | 15.2961 | 1.0986 | 1.0225 | 0.0 | -0.1787 | -0.1388 | -0.0963 | -0.0718 | -0.0540 | -0.3649 | -0.3905 | 0.1440 | 0.0257 | -0.9014 |
3 | 19.6346 | 5.8143e-06 | 25.3536 | 20.9947 | 20.0873 | 19.7947 | 19.5552 | 1.6094 | 1.2054 | 0.0 | -0.3070 | -0.1941 | -0.1339 | -0.1003 | -0.0795 | -1.2000 | -1.4395 | 0.5321 | 0.2395 | -1.3906 |
4 | 17.9826 | -3.3247e-05 | 23.7714 | 20.4338 | 18.8630 | 18.1903 | 17.8759 | 2.6391 | 1.1939 | 0.0 | -0.6820 | -0.2653 | -0.1794 | -0.1339 | -0.1067 | -2.2436 | -2.5579 | 0.9871 | 0.3144 | -9.3609 |
y = df[target_col].values[:320000]
df.drop(target_col, axis=1, inplace=True)
trn = df.iloc[:320000].values
tst = df.iloc[320000:].values
feature_name = df.columns.tolist()
print(y.shape, trn.shape, tst.shape)
(320000,) (320000, 19) (80000, 19)
Hyperparameter Tuning¶
X_trn, X_val, y_trn, y_val = train_test_split(trn, y, test_size=.2, random_state=seed)
params = {
"objective": "multiclass",
"n_estimators": 1000,
"subsample_freq": 1,
"random_state": seed,
"n_jobs": -1,
}
space = {
"learning_rate": hp.loguniform("learning_rate", np.log(0.01), np.log(0.3)),
"num_leaves": hp.choice("num_leaves", [15, 31, 63, 127]),
"colsample_bytree": hp.quniform("colsample_bytree", .5, .9, 0.1),
"subsample": hp.quniform("subsample", .5, .9, 0.1),
"min_child_samples": hp.choice('min_child_samples', [10, 25, 100])
}
hp
는 hyperopt
에서 불러온 모듈이며 hp
의 각 함수가 뜻하는 바는 아래와 같습니다.
hp.loguniform("learning_rate", np.log(0.01), np.log(0.3))
: learning_rate를 log(0.01)과 log(0.3) 사이의 임의의 값으로 선택hp.choice("num_leaves", [15, 31, 63, 127])
: num_leaves를 15, 31, 63, 127 중 하나의 값으로 선택hp.quniform("colsample_bytree", .5, .9, 0.1)
: 0.5와 0.9사이의 0.1의 간격을 갖는 값중 하나로 colsample_bytree를 선택
def objective(hyperparams):
model = lgb.LGBMClassifier(**params, **hyperparams)
model.fit(X=X_trn, y=y_trn,
eval_set=[(X_val, y_val)],
eval_metric="multi_logloss",
early_stopping_rounds=10,
verbose=False)
score = model.best_score_["valid_0"]["multi_logloss"]
return {'loss': score, 'status': STATUS_OK, 'model': model}
trials = Trials()
best = fmin(fn=objective, space=space, trials=trials,
algo=tpe.suggest, max_evals=10, verbose=1)
hyperparams = space_eval(space, best)
n_best = trials.best_trial['result']['model'].best_iteration_
params.update(hyperparams)
print(params)
100%|██████████| 10/10 [02:45<00:00, 16.55s/trial, best loss: 0.161683208975629]
{'objective': 'multiclass', 'n_estimators': 1000, 'subsample_freq': 1, 'random_state': 42, 'n_jobs': -1, 'colsample_bytree': 0.7000000000000001, 'learning_rate': 0.03108434204266342, 'min_child_samples': 10, 'num_leaves': 127, 'subsample': 0.6000000000000001}
Stratified K-Fold Cross Validation¶
cv = StratifiedKFold(n_splits=n_fold, shuffle=True, random_state=seed)
LightGBM 모델 학습¶
p_val = np.zeros((trn.shape[0], n_class))
p_tst = np.zeros((tst.shape[0], n_class))
for i, (i_trn, i_val) in enumerate(cv.split(trn, y), 1):
print(f'training model for CV #{i}')
clf = lgb.LGBMClassifier(**params)
clf.fit(trn[i_trn], y[i_trn],
eval_set=[(trn[i_val], y[i_val])],
eval_metric='multiclass',
early_stopping_rounds=10)
p_val[i_val, :] = clf.predict_proba(trn[i_val])
p_tst += clf.predict_proba(tst) / n_fold
training model for CV #1
[1] valid_0's multi_logloss: 0.954233
Training until validation scores don't improve for 10 rounds
[2] valid_0's multi_logloss: 0.924743
[3] valid_0's multi_logloss: 0.894827
[4] valid_0's multi_logloss: 0.866741
[5] valid_0's multi_logloss: 0.839951
[6] valid_0's multi_logloss: 0.816908
[7] valid_0's multi_logloss: 0.793714
[8] valid_0's multi_logloss: 0.772796
[9] valid_0's multi_logloss: 0.753847
[10] valid_0's multi_logloss: 0.73288
[11] valid_0's multi_logloss: 0.71286
[12] valid_0's multi_logloss: 0.693807
[13] valid_0's multi_logloss: 0.675524
[14] valid_0's multi_logloss: 0.65779
[15] valid_0's multi_logloss: 0.641412
[16] valid_0's multi_logloss: 0.626447
[17] valid_0's multi_logloss: 0.611459
[18] valid_0's multi_logloss: 0.596917
[19] valid_0's multi_logloss: 0.583272
[20] valid_0's multi_logloss: 0.570976
[21] valid_0's multi_logloss: 0.557878
[22] valid_0's multi_logloss: 0.545354
[23] valid_0's multi_logloss: 0.533336
[24] valid_0's multi_logloss: 0.52288
[25] valid_0's multi_logloss: 0.511876
[26] valid_0's multi_logloss: 0.502915
[27] valid_0's multi_logloss: 0.492674
[28] valid_0's multi_logloss: 0.482539
[29] valid_0's multi_logloss: 0.47385
[30] valid_0's multi_logloss: 0.464822
[31] valid_0's multi_logloss: 0.457011
[32] valid_0's multi_logloss: 0.448649
[33] valid_0's multi_logloss: 0.439989
[34] valid_0's multi_logloss: 0.431633
[35] valid_0's multi_logloss: 0.423759
[36] valid_0's multi_logloss: 0.416499
[37] valid_0's multi_logloss: 0.409675
[38] valid_0's multi_logloss: 0.402948
[39] valid_0's multi_logloss: 0.396482
[40] valid_0's multi_logloss: 0.390272
[41] valid_0's multi_logloss: 0.384193
[42] valid_0's multi_logloss: 0.378325
[43] valid_0's multi_logloss: 0.372325
[44] valid_0's multi_logloss: 0.367487
[45] valid_0's multi_logloss: 0.362428
[46] valid_0's multi_logloss: 0.357493
[47] valid_0's multi_logloss: 0.352895
[48] valid_0's multi_logloss: 0.348047
[49] valid_0's multi_logloss: 0.34296
[50] valid_0's multi_logloss: 0.338691
[51] valid_0's multi_logloss: 0.334022
[52] valid_0's multi_logloss: 0.329819
[53] valid_0's multi_logloss: 0.325557
[54] valid_0's multi_logloss: 0.321717
[55] valid_0's multi_logloss: 0.317862
[56] valid_0's multi_logloss: 0.314433
[57] valid_0's multi_logloss: 0.311109
[58] valid_0's multi_logloss: 0.307696
[59] valid_0's multi_logloss: 0.303858
[60] valid_0's multi_logloss: 0.300642
[61] valid_0's multi_logloss: 0.296929
[62] valid_0's multi_logloss: 0.293582
[63] valid_0's multi_logloss: 0.290824
[64] valid_0's multi_logloss: 0.287785
[65] valid_0's multi_logloss: 0.284729
[66] valid_0's multi_logloss: 0.281985
[67] valid_0's multi_logloss: 0.278864
[68] valid_0's multi_logloss: 0.275776
[69] valid_0's multi_logloss: 0.273325
[70] valid_0's multi_logloss: 0.270471
[71] valid_0's multi_logloss: 0.268078
[72] valid_0's multi_logloss: 0.26569
[73] valid_0's multi_logloss: 0.263856
[74] valid_0's multi_logloss: 0.261546
[75] valid_0's multi_logloss: 0.259072
[76] valid_0's multi_logloss: 0.257032
[77] valid_0's multi_logloss: 0.254743
[78] valid_0's multi_logloss: 0.252826
[79] valid_0's multi_logloss: 0.250495
[80] valid_0's multi_logloss: 0.248533
[81] valid_0's multi_logloss: 0.246417
[82] valid_0's multi_logloss: 0.244279
[83] valid_0's multi_logloss: 0.242394
[84] valid_0's multi_logloss: 0.240407
[85] valid_0's multi_logloss: 0.238411
[86] valid_0's multi_logloss: 0.23651
[87] valid_0's multi_logloss: 0.234916
[88] valid_0's multi_logloss: 0.233498
[89] valid_0's multi_logloss: 0.23182
[90] valid_0's multi_logloss: 0.230206
[91] valid_0's multi_logloss: 0.228598
[92] valid_0's multi_logloss: 0.227232
[93] valid_0's multi_logloss: 0.225791
[94] valid_0's multi_logloss: 0.224252
[95] valid_0's multi_logloss: 0.222898
[96] valid_0's multi_logloss: 0.221475
[97] valid_0's multi_logloss: 0.220176
[98] valid_0's multi_logloss: 0.218769
[99] valid_0's multi_logloss: 0.21753
[100] valid_0's multi_logloss: 0.216235
[101] valid_0's multi_logloss: 0.215123
[102] valid_0's multi_logloss: 0.213974
[103] valid_0's multi_logloss: 0.212703
[104] valid_0's multi_logloss: 0.211631
[105] valid_0's multi_logloss: 0.210507
[106] valid_0's multi_logloss: 0.20951
[107] valid_0's multi_logloss: 0.208715
[108] valid_0's multi_logloss: 0.207597
[109] valid_0's multi_logloss: 0.20663
[110] valid_0's multi_logloss: 0.205825
[111] valid_0's multi_logloss: 0.20503
[112] valid_0's multi_logloss: 0.204289
[113] valid_0's multi_logloss: 0.203358
[114] valid_0's multi_logloss: 0.202571
[115] valid_0's multi_logloss: 0.201693
[116] valid_0's multi_logloss: 0.200802
[117] valid_0's multi_logloss: 0.199867
[118] valid_0's multi_logloss: 0.199189
[119] valid_0's multi_logloss: 0.19861
[120] valid_0's multi_logloss: 0.19777
[121] valid_0's multi_logloss: 0.197159
[122] valid_0's multi_logloss: 0.196536
[123] valid_0's multi_logloss: 0.195766
[124] valid_0's multi_logloss: 0.195083
[125] valid_0's multi_logloss: 0.194401
[126] valid_0's multi_logloss: 0.193912
[127] valid_0's multi_logloss: 0.193347
[128] valid_0's multi_logloss: 0.192743
[129] valid_0's multi_logloss: 0.192159
[130] valid_0's multi_logloss: 0.191483
[131] valid_0's multi_logloss: 0.190845
[132] valid_0's multi_logloss: 0.190304
[133] valid_0's multi_logloss: 0.189765
[134] valid_0's multi_logloss: 0.189191
[135] valid_0's multi_logloss: 0.188617
[136] valid_0's multi_logloss: 0.188002
[137] valid_0's multi_logloss: 0.187529
[138] valid_0's multi_logloss: 0.186914
[139] valid_0's multi_logloss: 0.186504
[140] valid_0's multi_logloss: 0.186058
[141] valid_0's multi_logloss: 0.185582
[142] valid_0's multi_logloss: 0.185127
[143] valid_0's multi_logloss: 0.184807
[144] valid_0's multi_logloss: 0.184323
[145] valid_0's multi_logloss: 0.18394
[146] valid_0's multi_logloss: 0.183597
[147] valid_0's multi_logloss: 0.183122
[148] valid_0's multi_logloss: 0.182736
[149] valid_0's multi_logloss: 0.182353
[150] valid_0's multi_logloss: 0.181964
[151] valid_0's multi_logloss: 0.181597
[152] valid_0's multi_logloss: 0.181289
[153] valid_0's multi_logloss: 0.180907
[154] valid_0's multi_logloss: 0.180591
[155] valid_0's multi_logloss: 0.180188
[156] valid_0's multi_logloss: 0.179846
[157] valid_0's multi_logloss: 0.179646
[158] valid_0's multi_logloss: 0.179329
[159] valid_0's multi_logloss: 0.178922
[160] valid_0's multi_logloss: 0.178573
[161] valid_0's multi_logloss: 0.178333
[162] valid_0's multi_logloss: 0.178021
[163] valid_0's multi_logloss: 0.177671
[164] valid_0's multi_logloss: 0.177333
[165] valid_0's multi_logloss: 0.177045
[166] valid_0's multi_logloss: 0.176691
[167] valid_0's multi_logloss: 0.176368
[168] valid_0's multi_logloss: 0.17606
[169] valid_0's multi_logloss: 0.175742
[170] valid_0's multi_logloss: 0.175481
[171] valid_0's multi_logloss: 0.175228
[172] valid_0's multi_logloss: 0.174929
[173] valid_0's multi_logloss: 0.174696
[174] valid_0's multi_logloss: 0.174385
[175] valid_0's multi_logloss: 0.174186
[176] valid_0's multi_logloss: 0.173872
[177] valid_0's multi_logloss: 0.173648
[178] valid_0's multi_logloss: 0.173435
[179] valid_0's multi_logloss: 0.173255
[180] valid_0's multi_logloss: 0.173014
[181] valid_0's multi_logloss: 0.172819
[182] valid_0's multi_logloss: 0.172594
[183] valid_0's multi_logloss: 0.172373
[184] valid_0's multi_logloss: 0.172181
[185] valid_0's multi_logloss: 0.171998
[186] valid_0's multi_logloss: 0.171778
[187] valid_0's multi_logloss: 0.171631
[188] valid_0's multi_logloss: 0.171407
[189] valid_0's multi_logloss: 0.171195
[190] valid_0's multi_logloss: 0.17098
[191] valid_0's multi_logloss: 0.170773
[192] valid_0's multi_logloss: 0.170627
[193] valid_0's multi_logloss: 0.170502
[194] valid_0's multi_logloss: 0.170331
[195] valid_0's multi_logloss: 0.170119
[196] valid_0's multi_logloss: 0.169961
[197] valid_0's multi_logloss: 0.169793
[198] valid_0's multi_logloss: 0.169618
[199] valid_0's multi_logloss: 0.169445
[200] valid_0's multi_logloss: 0.169273
[201] valid_0's multi_logloss: 0.169092
[202] valid_0's multi_logloss: 0.16895
[203] valid_0's multi_logloss: 0.168848
[204] valid_0's multi_logloss: 0.168735
[205] valid_0's multi_logloss: 0.168647
[206] valid_0's multi_logloss: 0.168482
[207] valid_0's multi_logloss: 0.168363
[208] valid_0's multi_logloss: 0.16824
[209] valid_0's multi_logloss: 0.16811
[210] valid_0's multi_logloss: 0.167952
[211] valid_0's multi_logloss: 0.167869
[212] valid_0's multi_logloss: 0.167742
[213] valid_0's multi_logloss: 0.167655
[214] valid_0's multi_logloss: 0.167534
[215] valid_0's multi_logloss: 0.167433
[216] valid_0's multi_logloss: 0.16729
[217] valid_0's multi_logloss: 0.167203
[218] valid_0's multi_logloss: 0.167126
[219] valid_0's multi_logloss: 0.167008
[220] valid_0's multi_logloss: 0.166889
[221] valid_0's multi_logloss: 0.166763
[222] valid_0's multi_logloss: 0.166685
[223] valid_0's multi_logloss: 0.166572
[224] valid_0's multi_logloss: 0.166463
[225] valid_0's multi_logloss: 0.166375
[226] valid_0's multi_logloss: 0.166283
[227] valid_0's multi_logloss: 0.166225
[228] valid_0's multi_logloss: 0.166126
[229] valid_0's multi_logloss: 0.16602
[230] valid_0's multi_logloss: 0.165921
[231] valid_0's multi_logloss: 0.165828
[232] valid_0's multi_logloss: 0.165753
[233] valid_0's multi_logloss: 0.165677
[234] valid_0's multi_logloss: 0.165592
[235] valid_0's multi_logloss: 0.1655
[236] valid_0's multi_logloss: 0.165412
[237] valid_0's multi_logloss: 0.165325
[238] valid_0's multi_logloss: 0.165271
[239] valid_0's multi_logloss: 0.165188
[240] valid_0's multi_logloss: 0.165086
[241] valid_0's multi_logloss: 0.164986
[242] valid_0's multi_logloss: 0.164908
[243] valid_0's multi_logloss: 0.164815
[244] valid_0's multi_logloss: 0.164727
[245] valid_0's multi_logloss: 0.164684
[246] valid_0's multi_logloss: 0.164634
[247] valid_0's multi_logloss: 0.164567
[248] valid_0's multi_logloss: 0.164515
[249] valid_0's multi_logloss: 0.16442
[250] valid_0's multi_logloss: 0.164347
[251] valid_0's multi_logloss: 0.164289
[252] valid_0's multi_logloss: 0.164229
[253] valid_0's multi_logloss: 0.164173
[254] valid_0's multi_logloss: 0.164132
[255] valid_0's multi_logloss: 0.164074
[256] valid_0's multi_logloss: 0.164013
[257] valid_0's multi_logloss: 0.163914
[258] valid_0's multi_logloss: 0.163858
[259] valid_0's multi_logloss: 0.163809
[260] valid_0's multi_logloss: 0.163752
[261] valid_0's multi_logloss: 0.16369
[262] valid_0's multi_logloss: 0.163638
[263] valid_0's multi_logloss: 0.163574
[264] valid_0's multi_logloss: 0.163497
[265] valid_0's multi_logloss: 0.163446
[266] valid_0's multi_logloss: 0.163405
[267] valid_0's multi_logloss: 0.163359
[268] valid_0's multi_logloss: 0.163318
[269] valid_0's multi_logloss: 0.163272
[270] valid_0's multi_logloss: 0.163197
[271] valid_0's multi_logloss: 0.163153
[272] valid_0's multi_logloss: 0.16311
[273] valid_0's multi_logloss: 0.163081
[274] valid_0's multi_logloss: 0.163028
[275] valid_0's multi_logloss: 0.162973
[276] valid_0's multi_logloss: 0.162931
[277] valid_0's multi_logloss: 0.16288
[278] valid_0's multi_logloss: 0.162811
[279] valid_0's multi_logloss: 0.162758
[280] valid_0's multi_logloss: 0.162727
[281] valid_0's multi_logloss: 0.162673
[282] valid_0's multi_logloss: 0.162636
[283] valid_0's multi_logloss: 0.162595
[284] valid_0's multi_logloss: 0.162546
[285] valid_0's multi_logloss: 0.162516
[286] valid_0's multi_logloss: 0.162483
[287] valid_0's multi_logloss: 0.162452
[288] valid_0's multi_logloss: 0.162416
[289] valid_0's multi_logloss: 0.162359
[290] valid_0's multi_logloss: 0.162308
[291] valid_0's multi_logloss: 0.162253
[292] valid_0's multi_logloss: 0.162216
[293] valid_0's multi_logloss: 0.162179
[294] valid_0's multi_logloss: 0.162157
[295] valid_0's multi_logloss: 0.162116
[296] valid_0's multi_logloss: 0.16209
[297] valid_0's multi_logloss: 0.162052
[298] valid_0's multi_logloss: 0.162009
[299] valid_0's multi_logloss: 0.161967
[300] valid_0's multi_logloss: 0.161939
[301] valid_0's multi_logloss: 0.161896
[302] valid_0's multi_logloss: 0.161875
[303] valid_0's multi_logloss: 0.161842
[304] valid_0's multi_logloss: 0.161801
[305] valid_0's multi_logloss: 0.161757
[306] valid_0's multi_logloss: 0.161744
[307] valid_0's multi_logloss: 0.161722
[308] valid_0's multi_logloss: 0.161715
[309] valid_0's multi_logloss: 0.161693
[310] valid_0's multi_logloss: 0.16169
[311] valid_0's multi_logloss: 0.161663
[312] valid_0's multi_logloss: 0.161637
[313] valid_0's multi_logloss: 0.161618
[314] valid_0's multi_logloss: 0.161573
[315] valid_0's multi_logloss: 0.161544
[316] valid_0's multi_logloss: 0.161516
[317] valid_0's multi_logloss: 0.161476
[318] valid_0's multi_logloss: 0.161449
[319] valid_0's multi_logloss: 0.161434
[320] valid_0's multi_logloss: 0.161421
[321] valid_0's multi_logloss: 0.161385
[322] valid_0's multi_logloss: 0.161363
[323] valid_0's multi_logloss: 0.161328
[324] valid_0's multi_logloss: 0.161301
[325] valid_0's multi_logloss: 0.161278
[326] valid_0's multi_logloss: 0.161266
[327] valid_0's multi_logloss: 0.161246
[328] valid_0's multi_logloss: 0.161212
[329] valid_0's multi_logloss: 0.161192
[330] valid_0's multi_logloss: 0.161195
[331] valid_0's multi_logloss: 0.161174
[332] valid_0's multi_logloss: 0.161138
[333] valid_0's multi_logloss: 0.161127
[334] valid_0's multi_logloss: 0.161105
[335] valid_0's multi_logloss: 0.161092
[336] valid_0's multi_logloss: 0.161065
[337] valid_0's multi_logloss: 0.161052
[338] valid_0's multi_logloss: 0.16104
[339] valid_0's multi_logloss: 0.16102
[340] valid_0's multi_logloss: 0.161009
[341] valid_0's multi_logloss: 0.161001
[342] valid_0's multi_logloss: 0.160988
[343] valid_0's multi_logloss: 0.160965
[344] valid_0's multi_logloss: 0.160945
[345] valid_0's multi_logloss: 0.160931
[346] valid_0's multi_logloss: 0.160903
[347] valid_0's multi_logloss: 0.160884
[348] valid_0's multi_logloss: 0.16085
[349] valid_0's multi_logloss: 0.160845
[350] valid_0's multi_logloss: 0.160838
[351] valid_0's multi_logloss: 0.160822
[352] valid_0's multi_logloss: 0.160803
[353] valid_0's multi_logloss: 0.160773
[354] valid_0's multi_logloss: 0.160742
[355] valid_0's multi_logloss: 0.160713
[356] valid_0's multi_logloss: 0.16071
[357] valid_0's multi_logloss: 0.160691
[358] valid_0's multi_logloss: 0.160685
[359] valid_0's multi_logloss: 0.160681
[360] valid_0's multi_logloss: 0.160669
[361] valid_0's multi_logloss: 0.160643
[362] valid_0's multi_logloss: 0.160627
[363] valid_0's multi_logloss: 0.160617
[364] valid_0's multi_logloss: 0.160625
[365] valid_0's multi_logloss: 0.160604
[366] valid_0's multi_logloss: 0.160601
[367] valid_0's multi_logloss: 0.160596
[368] valid_0's multi_logloss: 0.160579
[369] valid_0's multi_logloss: 0.160577
[370] valid_0's multi_logloss: 0.160571
[371] valid_0's multi_logloss: 0.160556
[372] valid_0's multi_logloss: 0.160558
[373] valid_0's multi_logloss: 0.160538
[374] valid_0's multi_logloss: 0.160512
[375] valid_0's multi_logloss: 0.160495
[376] valid_0's multi_logloss: 0.160481
[377] valid_0's multi_logloss: 0.160466
[378] valid_0's multi_logloss: 0.160457
[379] valid_0's multi_logloss: 0.16046
[380] valid_0's multi_logloss: 0.16044
[381] valid_0's multi_logloss: 0.160432
[382] valid_0's multi_logloss: 0.160429
[383] valid_0's multi_logloss: 0.160419
[384] valid_0's multi_logloss: 0.160413
[385] valid_0's multi_logloss: 0.160405
[386] valid_0's multi_logloss: 0.160371
[387] valid_0's multi_logloss: 0.160346
[388] valid_0's multi_logloss: 0.160337
[389] valid_0's multi_logloss: 0.160335
[390] valid_0's multi_logloss: 0.16033
[391] valid_0's multi_logloss: 0.160307
[392] valid_0's multi_logloss: 0.160301
[393] valid_0's multi_logloss: 0.1603
[394] valid_0's multi_logloss: 0.160272
[395] valid_0's multi_logloss: 0.160266
[396] valid_0's multi_logloss: 0.160253
[397] valid_0's multi_logloss: 0.160239
[398] valid_0's multi_logloss: 0.160228
[399] valid_0's multi_logloss: 0.160215
[400] valid_0's multi_logloss: 0.16021
[401] valid_0's multi_logloss: 0.160201
[402] valid_0's multi_logloss: 0.160199
[403] valid_0's multi_logloss: 0.1602
[404] valid_0's multi_logloss: 0.160197
[405] valid_0's multi_logloss: 0.1602
[406] valid_0's multi_logloss: 0.160191
[407] valid_0's multi_logloss: 0.1602
[408] valid_0's multi_logloss: 0.160195
[409] valid_0's multi_logloss: 0.160185
[410] valid_0's multi_logloss: 0.160179
[411] valid_0's multi_logloss: 0.160167
[412] valid_0's multi_logloss: 0.16016
[413] valid_0's multi_logloss: 0.160155
[414] valid_0's multi_logloss: 0.160142
[415] valid_0's multi_logloss: 0.160141
[416] valid_0's multi_logloss: 0.160129
[417] valid_0's multi_logloss: 0.160125
[418] valid_0's multi_logloss: 0.160121
[419] valid_0's multi_logloss: 0.160103
[420] valid_0's multi_logloss: 0.160108
[421] valid_0's multi_logloss: 0.160092
[422] valid_0's multi_logloss: 0.160078
[423] valid_0's multi_logloss: 0.160082
[424] valid_0's multi_logloss: 0.160064
[425] valid_0's multi_logloss: 0.160055
[426] valid_0's multi_logloss: 0.160047
[427] valid_0's multi_logloss: 0.160034
[428] valid_0's multi_logloss: 0.160026
[429] valid_0's multi_logloss: 0.160011
[430] valid_0's multi_logloss: 0.160007
[431] valid_0's multi_logloss: 0.159993
[432] valid_0's multi_logloss: 0.159981
[433] valid_0's multi_logloss: 0.159985
[434] valid_0's multi_logloss: 0.159976
[435] valid_0's multi_logloss: 0.159972
[436] valid_0's multi_logloss: 0.159973
[437] valid_0's multi_logloss: 0.159971
[438] valid_0's multi_logloss: 0.159968
[439] valid_0's multi_logloss: 0.159958
[440] valid_0's multi_logloss: 0.159958
[441] valid_0's multi_logloss: 0.159961
[442] valid_0's multi_logloss: 0.15996
[443] valid_0's multi_logloss: 0.159945
[444] valid_0's multi_logloss: 0.159936
[445] valid_0's multi_logloss: 0.159932
[446] valid_0's multi_logloss: 0.159922
[447] valid_0's multi_logloss: 0.159913
[448] valid_0's multi_logloss: 0.159915
[449] valid_0's multi_logloss: 0.159906
[450] valid_0's multi_logloss: 0.159887
[451] valid_0's multi_logloss: 0.159875
[452] valid_0's multi_logloss: 0.159869
[453] valid_0's multi_logloss: 0.159859
[454] valid_0's multi_logloss: 0.159859
[455] valid_0's multi_logloss: 0.159852
[456] valid_0's multi_logloss: 0.159846
[457] valid_0's multi_logloss: 0.159848
[458] valid_0's multi_logloss: 0.159837
[459] valid_0's multi_logloss: 0.159828
[460] valid_0's multi_logloss: 0.15982
[461] valid_0's multi_logloss: 0.159821
[462] valid_0's multi_logloss: 0.159824
[463] valid_0's multi_logloss: 0.159824
[464] valid_0's multi_logloss: 0.159812
[465] valid_0's multi_logloss: 0.159809
[466] valid_0's multi_logloss: 0.159805
[467] valid_0's multi_logloss: 0.159798
[468] valid_0's multi_logloss: 0.159794
[469] valid_0's multi_logloss: 0.159792
[470] valid_0's multi_logloss: 0.159796
[471] valid_0's multi_logloss: 0.159793
[472] valid_0's multi_logloss: 0.1598
[473] valid_0's multi_logloss: 0.159794
[474] valid_0's multi_logloss: 0.159782
[475] valid_0's multi_logloss: 0.15978
[476] valid_0's multi_logloss: 0.159769
[477] valid_0's multi_logloss: 0.159763
[478] valid_0's multi_logloss: 0.159756
[479] valid_0's multi_logloss: 0.159761
[480] valid_0's multi_logloss: 0.159759
[481] valid_0's multi_logloss: 0.15975
[482] valid_0's multi_logloss: 0.159744
[483] valid_0's multi_logloss: 0.159729
[484] valid_0's multi_logloss: 0.159723
[485] valid_0's multi_logloss: 0.15973
[486] valid_0's multi_logloss: 0.159737
[487] valid_0's multi_logloss: 0.15972
[488] valid_0's multi_logloss: 0.159718
[489] valid_0's multi_logloss: 0.159699
[490] valid_0's multi_logloss: 0.159716
[491] valid_0's multi_logloss: 0.159706
[492] valid_0's multi_logloss: 0.159705
[493] valid_0's multi_logloss: 0.159695
[494] valid_0's multi_logloss: 0.159691
[495] valid_0's multi_logloss: 0.159688
[496] valid_0's multi_logloss: 0.159677
[497] valid_0's multi_logloss: 0.159665
[498] valid_0's multi_logloss: 0.15966
[499] valid_0's multi_logloss: 0.15966
[500] valid_0's multi_logloss: 0.15965
[501] valid_0's multi_logloss: 0.159638
[502] valid_0's multi_logloss: 0.159638
[503] valid_0's multi_logloss: 0.159635
[504] valid_0's multi_logloss: 0.159641
[505] valid_0's multi_logloss: 0.159631
[506] valid_0's multi_logloss: 0.159629
[507] valid_0's multi_logloss: 0.159622
[508] valid_0's multi_logloss: 0.159611
[509] valid_0's multi_logloss: 0.159615
[510] valid_0's multi_logloss: 0.159609
[511] valid_0's multi_logloss: 0.159606
[512] valid_0's multi_logloss: 0.159598
[513] valid_0's multi_logloss: 0.1596
[514] valid_0's multi_logloss: 0.159596
[515] valid_0's multi_logloss: 0.159608
[516] valid_0's multi_logloss: 0.159599
[517] valid_0's multi_logloss: 0.159608
[518] valid_0's multi_logloss: 0.159612
[519] valid_0's multi_logloss: 0.159605
[520] valid_0's multi_logloss: 0.159603
[521] valid_0's multi_logloss: 0.159604
[522] valid_0's multi_logloss: 0.15961
[523] valid_0's multi_logloss: 0.159611
[524] valid_0's multi_logloss: 0.159626
Early stopping, best iteration is:
[514] valid_0's multi_logloss: 0.159596
training model for CV #2
[1] valid_0's multi_logloss: 0.954226
Training until validation scores don't improve for 10 rounds
[2] valid_0's multi_logloss: 0.924784
[3] valid_0's multi_logloss: 0.894989
[4] valid_0's multi_logloss: 0.866925
[5] valid_0's multi_logloss: 0.840153
[6] valid_0's multi_logloss: 0.817084
[7] valid_0's multi_logloss: 0.793894
[8] valid_0's multi_logloss: 0.773023
[9] valid_0's multi_logloss: 0.754182
[10] valid_0's multi_logloss: 0.733113
[11] valid_0's multi_logloss: 0.713224
[12] valid_0's multi_logloss: 0.694251
[13] valid_0's multi_logloss: 0.676042
[14] valid_0's multi_logloss: 0.658449
[15] valid_0's multi_logloss: 0.641972
[16] valid_0's multi_logloss: 0.62707
[17] valid_0's multi_logloss: 0.612085
[18] valid_0's multi_logloss: 0.59743
[19] valid_0's multi_logloss: 0.583853
[20] valid_0's multi_logloss: 0.571533
[21] valid_0's multi_logloss: 0.558489
[22] valid_0's multi_logloss: 0.546014
[23] valid_0's multi_logloss: 0.534088
[24] valid_0's multi_logloss: 0.523599
[25] valid_0's multi_logloss: 0.51263
[26] valid_0's multi_logloss: 0.503754
[27] valid_0's multi_logloss: 0.493575
[28] valid_0's multi_logloss: 0.483382
[29] valid_0's multi_logloss: 0.474761
[30] valid_0's multi_logloss: 0.465728
[31] valid_0's multi_logloss: 0.457935
[32] valid_0's multi_logloss: 0.449583
[33] valid_0's multi_logloss: 0.440934
[34] valid_0's multi_logloss: 0.432593
[35] valid_0's multi_logloss: 0.424801
[36] valid_0's multi_logloss: 0.417513
[37] valid_0's multi_logloss: 0.410577
[38] valid_0's multi_logloss: 0.404002
[39] valid_0's multi_logloss: 0.397556
[40] valid_0's multi_logloss: 0.391375
[41] valid_0's multi_logloss: 0.385369
[42] valid_0's multi_logloss: 0.37949
[43] valid_0's multi_logloss: 0.373466
[44] valid_0's multi_logloss: 0.368639
[45] valid_0's multi_logloss: 0.363511
[46] valid_0's multi_logloss: 0.358599
[47] valid_0's multi_logloss: 0.353893
[48] valid_0's multi_logloss: 0.349056
[49] valid_0's multi_logloss: 0.34386
[50] valid_0's multi_logloss: 0.339551
[51] valid_0's multi_logloss: 0.334862
[52] valid_0's multi_logloss: 0.330672
[53] valid_0's multi_logloss: 0.326473
[54] valid_0's multi_logloss: 0.322676
[55] valid_0's multi_logloss: 0.318811
[56] valid_0's multi_logloss: 0.315438
[57] valid_0's multi_logloss: 0.312083
[58] valid_0's multi_logloss: 0.308628
[59] valid_0's multi_logloss: 0.304815
[60] valid_0's multi_logloss: 0.301583
[61] valid_0's multi_logloss: 0.29792
[62] valid_0's multi_logloss: 0.294581
[63] valid_0's multi_logloss: 0.291822
[64] valid_0's multi_logloss: 0.288761
[65] valid_0's multi_logloss: 0.285685
[66] valid_0's multi_logloss: 0.282964
[67] valid_0's multi_logloss: 0.279864
[68] valid_0's multi_logloss: 0.2768
[69] valid_0's multi_logloss: 0.274346
[70] valid_0's multi_logloss: 0.271492
[71] valid_0's multi_logloss: 0.269044
[72] valid_0's multi_logloss: 0.266644
[73] valid_0's multi_logloss: 0.264858
[74] valid_0's multi_logloss: 0.26257
[75] valid_0's multi_logloss: 0.260064
[76] valid_0's multi_logloss: 0.257982
[77] valid_0's multi_logloss: 0.255678
[78] valid_0's multi_logloss: 0.253705
[79] valid_0's multi_logloss: 0.251383
[80] valid_0's multi_logloss: 0.249398
[81] valid_0's multi_logloss: 0.24732
[82] valid_0's multi_logloss: 0.24519
[83] valid_0's multi_logloss: 0.243267
[84] valid_0's multi_logloss: 0.241318
[85] valid_0's multi_logloss: 0.239285
[86] valid_0's multi_logloss: 0.237404
[87] valid_0's multi_logloss: 0.23583
[88] valid_0's multi_logloss: 0.234413
[89] valid_0's multi_logloss: 0.232736
[90] valid_0's multi_logloss: 0.231083
[91] valid_0's multi_logloss: 0.229484
[92] valid_0's multi_logloss: 0.228146
[93] valid_0's multi_logloss: 0.226688
[94] valid_0's multi_logloss: 0.225147
[95] valid_0's multi_logloss: 0.223792
[96] valid_0's multi_logloss: 0.222354
[97] valid_0's multi_logloss: 0.22106
[98] valid_0's multi_logloss: 0.219663
[99] valid_0's multi_logloss: 0.218441
[100] valid_0's multi_logloss: 0.217185
[101] valid_0's multi_logloss: 0.216009
[102] valid_0's multi_logloss: 0.214882
[103] valid_0's multi_logloss: 0.213669
[104] valid_0's multi_logloss: 0.212603
[105] valid_0's multi_logloss: 0.211497
[106] valid_0's multi_logloss: 0.210492
[107] valid_0's multi_logloss: 0.20973
[108] valid_0's multi_logloss: 0.20862
[109] valid_0's multi_logloss: 0.207614
[110] valid_0's multi_logloss: 0.20681
[111] valid_0's multi_logloss: 0.206026
[112] valid_0's multi_logloss: 0.205273
[113] valid_0's multi_logloss: 0.204342
[114] valid_0's multi_logloss: 0.203568
[115] valid_0's multi_logloss: 0.202677
[116] valid_0's multi_logloss: 0.201786
[117] valid_0's multi_logloss: 0.200867
[118] valid_0's multi_logloss: 0.20015
[119] valid_0's multi_logloss: 0.199589
[120] valid_0's multi_logloss: 0.19875
[121] valid_0's multi_logloss: 0.198134
[122] valid_0's multi_logloss: 0.197505
[123] valid_0's multi_logloss: 0.196762
[124] valid_0's multi_logloss: 0.196116
[125] valid_0's multi_logloss: 0.195444
[126] valid_0's multi_logloss: 0.194924
[127] valid_0's multi_logloss: 0.194321
[128] valid_0's multi_logloss: 0.193692
[129] valid_0's multi_logloss: 0.193134
[130] valid_0's multi_logloss: 0.19247
[131] valid_0's multi_logloss: 0.191814
[132] valid_0's multi_logloss: 0.19125
[133] valid_0's multi_logloss: 0.190723
[134] valid_0's multi_logloss: 0.190158
[135] valid_0's multi_logloss: 0.189583
[136] valid_0's multi_logloss: 0.188947
[137] valid_0's multi_logloss: 0.188458
[138] valid_0's multi_logloss: 0.187849
[139] valid_0's multi_logloss: 0.187408
[140] valid_0's multi_logloss: 0.18694
[141] valid_0's multi_logloss: 0.186465
[142] valid_0's multi_logloss: 0.185995
[143] valid_0's multi_logloss: 0.185651
[144] valid_0's multi_logloss: 0.185182
[145] valid_0's multi_logloss: 0.184796
[146] valid_0's multi_logloss: 0.184434
[147] valid_0's multi_logloss: 0.183981
[148] valid_0's multi_logloss: 0.183591
[149] valid_0's multi_logloss: 0.183211
[150] valid_0's multi_logloss: 0.182814
[151] valid_0's multi_logloss: 0.182454
[152] valid_0's multi_logloss: 0.18218
[153] valid_0's multi_logloss: 0.181797
[154] valid_0's multi_logloss: 0.181464
[155] valid_0's multi_logloss: 0.181045
[156] valid_0's multi_logloss: 0.180703
[157] valid_0's multi_logloss: 0.180489
[158] valid_0's multi_logloss: 0.180195
[159] valid_0's multi_logloss: 0.179804
[160] valid_0's multi_logloss: 0.179462
[161] valid_0's multi_logloss: 0.179201
[162] valid_0's multi_logloss: 0.178887
[163] valid_0's multi_logloss: 0.178506
[164] valid_0's multi_logloss: 0.178197
[165] valid_0's multi_logloss: 0.177903
[166] valid_0's multi_logloss: 0.177534
[167] valid_0's multi_logloss: 0.177214
[168] valid_0's multi_logloss: 0.176883
[169] valid_0's multi_logloss: 0.176596
[170] valid_0's multi_logloss: 0.176342
[171] valid_0's multi_logloss: 0.176075
[172] valid_0's multi_logloss: 0.17579
[173] valid_0's multi_logloss: 0.175546
[174] valid_0's multi_logloss: 0.175266
[175] valid_0's multi_logloss: 0.175038
[176] valid_0's multi_logloss: 0.174755
[177] valid_0's multi_logloss: 0.174557
[178] valid_0's multi_logloss: 0.174334
[179] valid_0's multi_logloss: 0.174139
[180] valid_0's multi_logloss: 0.173876
[181] valid_0's multi_logloss: 0.173658
[182] valid_0's multi_logloss: 0.17344
[183] valid_0's multi_logloss: 0.173199
[184] valid_0's multi_logloss: 0.172998
[185] valid_0's multi_logloss: 0.172818
[186] valid_0's multi_logloss: 0.172593
[187] valid_0's multi_logloss: 0.172422
[188] valid_0's multi_logloss: 0.172213
[189] valid_0's multi_logloss: 0.17201
[190] valid_0's multi_logloss: 0.171804
[191] valid_0's multi_logloss: 0.171592
[192] valid_0's multi_logloss: 0.171437
[193] valid_0's multi_logloss: 0.171296
[194] valid_0's multi_logloss: 0.171128
[195] valid_0's multi_logloss: 0.170931
[196] valid_0's multi_logloss: 0.170746
[197] valid_0's multi_logloss: 0.170546
[198] valid_0's multi_logloss: 0.170335
[199] valid_0's multi_logloss: 0.170179
[200] valid_0's multi_logloss: 0.170005
[201] valid_0's multi_logloss: 0.169824
[202] valid_0's multi_logloss: 0.1697
[203] valid_0's multi_logloss: 0.169552
[204] valid_0's multi_logloss: 0.169435
[205] valid_0's multi_logloss: 0.169339
[206] valid_0's multi_logloss: 0.169188
[207] valid_0's multi_logloss: 0.169058
[208] valid_0's multi_logloss: 0.16894
[209] valid_0's multi_logloss: 0.168819
[210] valid_0's multi_logloss: 0.168643
[211] valid_0's multi_logloss: 0.16854
[212] valid_0's multi_logloss: 0.168397
[213] valid_0's multi_logloss: 0.168308
[214] valid_0's multi_logloss: 0.168198
[215] valid_0's multi_logloss: 0.168102
[216] valid_0's multi_logloss: 0.167936
[217] valid_0's multi_logloss: 0.167836
[218] valid_0's multi_logloss: 0.167744
[219] valid_0's multi_logloss: 0.167632
[220] valid_0's multi_logloss: 0.167547
[221] valid_0's multi_logloss: 0.167414
[222] valid_0's multi_logloss: 0.167312
[223] valid_0's multi_logloss: 0.167208
[224] valid_0's multi_logloss: 0.167104
[225] valid_0's multi_logloss: 0.166994
[226] valid_0's multi_logloss: 0.166913
[227] valid_0's multi_logloss: 0.166815
[228] valid_0's multi_logloss: 0.166692
[229] valid_0's multi_logloss: 0.16659
[230] valid_0's multi_logloss: 0.166479
[231] valid_0's multi_logloss: 0.166366
[232] valid_0's multi_logloss: 0.166303
[233] valid_0's multi_logloss: 0.166216
[234] valid_0's multi_logloss: 0.166136
[235] valid_0's multi_logloss: 0.166043
[236] valid_0's multi_logloss: 0.165974
[237] valid_0's multi_logloss: 0.165886
[238] valid_0's multi_logloss: 0.165816
[239] valid_0's multi_logloss: 0.165707
[240] valid_0's multi_logloss: 0.165605
[241] valid_0's multi_logloss: 0.165506
[242] valid_0's multi_logloss: 0.16542
[243] valid_0's multi_logloss: 0.165323
[244] valid_0's multi_logloss: 0.16523
[245] valid_0's multi_logloss: 0.165192
[246] valid_0's multi_logloss: 0.165134
[247] valid_0's multi_logloss: 0.165077
[248] valid_0's multi_logloss: 0.165016
[249] valid_0's multi_logloss: 0.164941
[250] valid_0's multi_logloss: 0.164887
[251] valid_0's multi_logloss: 0.164838
[252] valid_0's multi_logloss: 0.164782
[253] valid_0's multi_logloss: 0.164702
[254] valid_0's multi_logloss: 0.164649
[255] valid_0's multi_logloss: 0.164596
[256] valid_0's multi_logloss: 0.164534
[257] valid_0's multi_logloss: 0.164455
[258] valid_0's multi_logloss: 0.164392
[259] valid_0's multi_logloss: 0.16433
[260] valid_0's multi_logloss: 0.164265
[261] valid_0's multi_logloss: 0.164205
[262] valid_0's multi_logloss: 0.164155
[263] valid_0's multi_logloss: 0.164113
[264] valid_0's multi_logloss: 0.16406
[265] valid_0's multi_logloss: 0.16402
[266] valid_0's multi_logloss: 0.163976
[267] valid_0's multi_logloss: 0.163919
[268] valid_0's multi_logloss: 0.163866
[269] valid_0's multi_logloss: 0.163824
[270] valid_0's multi_logloss: 0.163763
[271] valid_0's multi_logloss: 0.163725
[272] valid_0's multi_logloss: 0.16369
[273] valid_0's multi_logloss: 0.163649
[274] valid_0's multi_logloss: 0.163591
[275] valid_0's multi_logloss: 0.163532
[276] valid_0's multi_logloss: 0.163493
[277] valid_0's multi_logloss: 0.163453
[278] valid_0's multi_logloss: 0.163403
[279] valid_0's multi_logloss: 0.163362
[280] valid_0's multi_logloss: 0.163315
[281] valid_0's multi_logloss: 0.16326
[282] valid_0's multi_logloss: 0.163219
[283] valid_0's multi_logloss: 0.163181
[284] valid_0's multi_logloss: 0.163145
[285] valid_0's multi_logloss: 0.163091
[286] valid_0's multi_logloss: 0.163048
[287] valid_0's multi_logloss: 0.163028
[288] valid_0's multi_logloss: 0.162988
[289] valid_0's multi_logloss: 0.162955
[290] valid_0's multi_logloss: 0.16293
[291] valid_0's multi_logloss: 0.162884
[292] valid_0's multi_logloss: 0.162831
[293] valid_0's multi_logloss: 0.162792
[294] valid_0's multi_logloss: 0.162755
[295] valid_0's multi_logloss: 0.162707
[296] valid_0's multi_logloss: 0.162647
[297] valid_0's multi_logloss: 0.162587
[298] valid_0's multi_logloss: 0.16256
[299] valid_0's multi_logloss: 0.162524
[300] valid_0's multi_logloss: 0.162499
[301] valid_0's multi_logloss: 0.162461
[302] valid_0's multi_logloss: 0.162434
[303] valid_0's multi_logloss: 0.16242
[304] valid_0's multi_logloss: 0.1624
[305] valid_0's multi_logloss: 0.162382
[306] valid_0's multi_logloss: 0.162361
[307] valid_0's multi_logloss: 0.162328
[308] valid_0's multi_logloss: 0.162319
[309] valid_0's multi_logloss: 0.162296
[310] valid_0's multi_logloss: 0.162281
[311] valid_0's multi_logloss: 0.162268
[312] valid_0's multi_logloss: 0.162227
[313] valid_0's multi_logloss: 0.162214
[314] valid_0's multi_logloss: 0.162189
[315] valid_0's multi_logloss: 0.162166
[316] valid_0's multi_logloss: 0.162155
[317] valid_0's multi_logloss: 0.162107
[318] valid_0's multi_logloss: 0.162083
[319] valid_0's multi_logloss: 0.162069
[320] valid_0's multi_logloss: 0.162042
[321] valid_0's multi_logloss: 0.162009
[322] valid_0's multi_logloss: 0.161975
[323] valid_0's multi_logloss: 0.161956
[324] valid_0's multi_logloss: 0.161931
[325] valid_0's multi_logloss: 0.161894
[326] valid_0's multi_logloss: 0.161864
[327] valid_0's multi_logloss: 0.161847
[328] valid_0's multi_logloss: 0.161812
[329] valid_0's multi_logloss: 0.161788
[330] valid_0's multi_logloss: 0.161774
[331] valid_0's multi_logloss: 0.16177
[332] valid_0's multi_logloss: 0.161732
[333] valid_0's multi_logloss: 0.161715
[334] valid_0's multi_logloss: 0.161681
[335] valid_0's multi_logloss: 0.161662
[336] valid_0's multi_logloss: 0.161639
[337] valid_0's multi_logloss: 0.161612
[338] valid_0's multi_logloss: 0.161577
[339] valid_0's multi_logloss: 0.161554
[340] valid_0's multi_logloss: 0.161532
[341] valid_0's multi_logloss: 0.161515
[342] valid_0's multi_logloss: 0.161498
[343] valid_0's multi_logloss: 0.161472
[344] valid_0's multi_logloss: 0.161459
[345] valid_0's multi_logloss: 0.161438
[346] valid_0's multi_logloss: 0.16142
[347] valid_0's multi_logloss: 0.161393
[348] valid_0's multi_logloss: 0.161385
[349] valid_0's multi_logloss: 0.161385
[350] valid_0's multi_logloss: 0.161351
[351] valid_0's multi_logloss: 0.161335
[352] valid_0's multi_logloss: 0.161316
[353] valid_0's multi_logloss: 0.161295
[354] valid_0's multi_logloss: 0.161264
[355] valid_0's multi_logloss: 0.161259
[356] valid_0's multi_logloss: 0.161249
[357] valid_0's multi_logloss: 0.161237
[358] valid_0's multi_logloss: 0.161229
[359] valid_0's multi_logloss: 0.161212
[360] valid_0's multi_logloss: 0.161187
[361] valid_0's multi_logloss: 0.161163
[362] valid_0's multi_logloss: 0.161142
[363] valid_0's multi_logloss: 0.161129
[364] valid_0's multi_logloss: 0.161117
[365] valid_0's multi_logloss: 0.161093
[366] valid_0's multi_logloss: 0.161071
[367] valid_0's multi_logloss: 0.161055
[368] valid_0's multi_logloss: 0.161042
[369] valid_0's multi_logloss: 0.161026
[370] valid_0's multi_logloss: 0.161014
[371] valid_0's multi_logloss: 0.161006
[372] valid_0's multi_logloss: 0.160987
[373] valid_0's multi_logloss: 0.160964
[374] valid_0's multi_logloss: 0.160941
[375] valid_0's multi_logloss: 0.160929
[376] valid_0's multi_logloss: 0.160913
[377] valid_0's multi_logloss: 0.160893
[378] valid_0's multi_logloss: 0.160874
[379] valid_0's multi_logloss: 0.160873
[380] valid_0's multi_logloss: 0.160859
[381] valid_0's multi_logloss: 0.160839
[382] valid_0's multi_logloss: 0.160831
[383] valid_0's multi_logloss: 0.160823
[384] valid_0's multi_logloss: 0.160812
[385] valid_0's multi_logloss: 0.160795
[386] valid_0's multi_logloss: 0.160776
[387] valid_0's multi_logloss: 0.16077
[388] valid_0's multi_logloss: 0.160767
[389] valid_0's multi_logloss: 0.160755
[390] valid_0's multi_logloss: 0.160738
[391] valid_0's multi_logloss: 0.16073
[392] valid_0's multi_logloss: 0.160722
[393] valid_0's multi_logloss: 0.160704
[394] valid_0's multi_logloss: 0.160688
[395] valid_0's multi_logloss: 0.160688
[396] valid_0's multi_logloss: 0.16067
[397] valid_0's multi_logloss: 0.160634
[398] valid_0's multi_logloss: 0.160628
[399] valid_0's multi_logloss: 0.160608
[400] valid_0's multi_logloss: 0.160605
[401] valid_0's multi_logloss: 0.160597
[402] valid_0's multi_logloss: 0.160581
[403] valid_0's multi_logloss: 0.160561
[404] valid_0's multi_logloss: 0.16055
[405] valid_0's multi_logloss: 0.160543
[406] valid_0's multi_logloss: 0.160536
[407] valid_0's multi_logloss: 0.16053
[408] valid_0's multi_logloss: 0.16053
[409] valid_0's multi_logloss: 0.160521
[410] valid_0's multi_logloss: 0.160511
[411] valid_0's multi_logloss: 0.160501
[412] valid_0's multi_logloss: 0.16048
[413] valid_0's multi_logloss: 0.160482
[414] valid_0's multi_logloss: 0.16048
[415] valid_0's multi_logloss: 0.160483
[416] valid_0's multi_logloss: 0.160474
[417] valid_0's multi_logloss: 0.160456
[418] valid_0's multi_logloss: 0.160443
[419] valid_0's multi_logloss: 0.160432
[420] valid_0's multi_logloss: 0.160428
[421] valid_0's multi_logloss: 0.160418
[422] valid_0's multi_logloss: 0.160415
[423] valid_0's multi_logloss: 0.160423
[424] valid_0's multi_logloss: 0.160421
[425] valid_0's multi_logloss: 0.160411
[426] valid_0's multi_logloss: 0.160399
[427] valid_0's multi_logloss: 0.160382
[428] valid_0's multi_logloss: 0.160372
[429] valid_0's multi_logloss: 0.160371
[430] valid_0's multi_logloss: 0.160359
[431] valid_0's multi_logloss: 0.160362
[432] valid_0's multi_logloss: 0.160333
[433] valid_0's multi_logloss: 0.160325
[434] valid_0's multi_logloss: 0.160317
[435] valid_0's multi_logloss: 0.160314
[436] valid_0's multi_logloss: 0.160317
[437] valid_0's multi_logloss: 0.160303
[438] valid_0's multi_logloss: 0.160294
[439] valid_0's multi_logloss: 0.160289
[440] valid_0's multi_logloss: 0.160292
[441] valid_0's multi_logloss: 0.160286
[442] valid_0's multi_logloss: 0.160276
[443] valid_0's multi_logloss: 0.16027
[444] valid_0's multi_logloss: 0.160258
[445] valid_0's multi_logloss: 0.160246
[446] valid_0's multi_logloss: 0.160232
[447] valid_0's multi_logloss: 0.160233
[448] valid_0's multi_logloss: 0.16022
[449] valid_0's multi_logloss: 0.16021
[450] valid_0's multi_logloss: 0.16021
[451] valid_0's multi_logloss: 0.160213
[452] valid_0's multi_logloss: 0.160204
[453] valid_0's multi_logloss: 0.160196
[454] valid_0's multi_logloss: 0.160193
[455] valid_0's multi_logloss: 0.160199
[456] valid_0's multi_logloss: 0.160187
[457] valid_0's multi_logloss: 0.160167
[458] valid_0's multi_logloss: 0.160162
[459] valid_0's multi_logloss: 0.160168
[460] valid_0's multi_logloss: 0.160145
[461] valid_0's multi_logloss: 0.160145
[462] valid_0's multi_logloss: 0.160153
[463] valid_0's multi_logloss: 0.160145
[464] valid_0's multi_logloss: 0.160147
[465] valid_0's multi_logloss: 0.16014
[466] valid_0's multi_logloss: 0.160137
[467] valid_0's multi_logloss: 0.160126
[468] valid_0's multi_logloss: 0.160122
[469] valid_0's multi_logloss: 0.160118
[470] valid_0's multi_logloss: 0.160116
[471] valid_0's multi_logloss: 0.16011
[472] valid_0's multi_logloss: 0.160104
[473] valid_0's multi_logloss: 0.160093
[474] valid_0's multi_logloss: 0.160097
[475] valid_0's multi_logloss: 0.160094
[476] valid_0's multi_logloss: 0.160099
[477] valid_0's multi_logloss: 0.160098
[478] valid_0's multi_logloss: 0.160092
[479] valid_0's multi_logloss: 0.160091
[480] valid_0's multi_logloss: 0.160093
[481] valid_0's multi_logloss: 0.160086
[482] valid_0's multi_logloss: 0.160084
[483] valid_0's multi_logloss: 0.160076
[484] valid_0's multi_logloss: 0.160082
[485] valid_0's multi_logloss: 0.160075
[486] valid_0's multi_logloss: 0.160075
[487] valid_0's multi_logloss: 0.160061
[488] valid_0's multi_logloss: 0.160058
[489] valid_0's multi_logloss: 0.160048
[490] valid_0's multi_logloss: 0.160059
[491] valid_0's multi_logloss: 0.160069
[492] valid_0's multi_logloss: 0.160069
[493] valid_0's multi_logloss: 0.160062
[494] valid_0's multi_logloss: 0.160059
[495] valid_0's multi_logloss: 0.160062
[496] valid_0's multi_logloss: 0.160054
[497] valid_0's multi_logloss: 0.160049
[498] valid_0's multi_logloss: 0.160052
[499] valid_0's multi_logloss: 0.160052
Early stopping, best iteration is:
[489] valid_0's multi_logloss: 0.160048
training model for CV #3
[1] valid_0's multi_logloss: 0.954266
Training until validation scores don't improve for 10 rounds
[2] valid_0's multi_logloss: 0.924936
[3] valid_0's multi_logloss: 0.895139
[4] valid_0's multi_logloss: 0.867276
[5] valid_0's multi_logloss: 0.840609
[6] valid_0's multi_logloss: 0.817526
[7] valid_0's multi_logloss: 0.794316
[8] valid_0's multi_logloss: 0.773404
[9] valid_0's multi_logloss: 0.754558
[10] valid_0's multi_logloss: 0.733503
[11] valid_0's multi_logloss: 0.713619
[12] valid_0's multi_logloss: 0.694688
[13] valid_0's multi_logloss: 0.676479
[14] valid_0's multi_logloss: 0.658913
[15] valid_0's multi_logloss: 0.642531
[16] valid_0's multi_logloss: 0.62773
[17] valid_0's multi_logloss: 0.612756
[18] valid_0's multi_logloss: 0.598165
[19] valid_0's multi_logloss: 0.584509
[20] valid_0's multi_logloss: 0.572201
[21] valid_0's multi_logloss: 0.559133
[22] valid_0's multi_logloss: 0.546609
[23] valid_0's multi_logloss: 0.534654
[24] valid_0's multi_logloss: 0.524197
[25] valid_0's multi_logloss: 0.513213
[26] valid_0's multi_logloss: 0.50426
[27] valid_0's multi_logloss: 0.494082
[28] valid_0's multi_logloss: 0.484001
[29] valid_0's multi_logloss: 0.475354
[30] valid_0's multi_logloss: 0.466321
[31] valid_0's multi_logloss: 0.458531
[32] valid_0's multi_logloss: 0.450162
[33] valid_0's multi_logloss: 0.441482
[34] valid_0's multi_logloss: 0.433139
[35] valid_0's multi_logloss: 0.425244
[36] valid_0's multi_logloss: 0.418078
[37] valid_0's multi_logloss: 0.411248
[38] valid_0's multi_logloss: 0.404631
[39] valid_0's multi_logloss: 0.3982
[40] valid_0's multi_logloss: 0.391987
[41] valid_0's multi_logloss: 0.385979
[42] valid_0's multi_logloss: 0.38014
[43] valid_0's multi_logloss: 0.37412
[44] valid_0's multi_logloss: 0.369332
[45] valid_0's multi_logloss: 0.364248
[46] valid_0's multi_logloss: 0.35931
[47] valid_0's multi_logloss: 0.354608
[48] valid_0's multi_logloss: 0.349784
[49] valid_0's multi_logloss: 0.344575
[50] valid_0's multi_logloss: 0.340292
[51] valid_0's multi_logloss: 0.335652
[52] valid_0's multi_logloss: 0.331454
[53] valid_0's multi_logloss: 0.327222
[54] valid_0's multi_logloss: 0.323411
[55] valid_0's multi_logloss: 0.319558
[56] valid_0's multi_logloss: 0.316117
[57] valid_0's multi_logloss: 0.312825
[58] valid_0's multi_logloss: 0.309398
[59] valid_0's multi_logloss: 0.305589
[60] valid_0's multi_logloss: 0.302382
[61] valid_0's multi_logloss: 0.298661
[62] valid_0's multi_logloss: 0.295296
[63] valid_0's multi_logloss: 0.292546
[64] valid_0's multi_logloss: 0.289463
[65] valid_0's multi_logloss: 0.286373
[66] valid_0's multi_logloss: 0.283645
[67] valid_0's multi_logloss: 0.28057
[68] valid_0's multi_logloss: 0.277521
[69] valid_0's multi_logloss: 0.275055
[70] valid_0's multi_logloss: 0.272165
[71] valid_0's multi_logloss: 0.269697
[72] valid_0's multi_logloss: 0.267317
[73] valid_0's multi_logloss: 0.265519
[74] valid_0's multi_logloss: 0.263227
[75] valid_0's multi_logloss: 0.260725
[76] valid_0's multi_logloss: 0.258614
[77] valid_0's multi_logloss: 0.256286
[78] valid_0's multi_logloss: 0.254349
[79] valid_0's multi_logloss: 0.25207
[80] valid_0's multi_logloss: 0.250098
[81] valid_0's multi_logloss: 0.248024
[82] valid_0's multi_logloss: 0.245885
[83] valid_0's multi_logloss: 0.243983
[84] valid_0's multi_logloss: 0.242
[85] valid_0's multi_logloss: 0.240021
[86] valid_0's multi_logloss: 0.238143
[87] valid_0's multi_logloss: 0.236583
[88] valid_0's multi_logloss: 0.235164
[89] valid_0's multi_logloss: 0.233479
[90] valid_0's multi_logloss: 0.231854
[91] valid_0's multi_logloss: 0.230227
[92] valid_0's multi_logloss: 0.228844
[93] valid_0's multi_logloss: 0.227417
[94] valid_0's multi_logloss: 0.225867
[95] valid_0's multi_logloss: 0.224507
[96] valid_0's multi_logloss: 0.223123
[97] valid_0's multi_logloss: 0.221807
[98] valid_0's multi_logloss: 0.22038
[99] valid_0's multi_logloss: 0.219168
[100] valid_0's multi_logloss: 0.217908
[101] valid_0's multi_logloss: 0.216779
[102] valid_0's multi_logloss: 0.215675
[103] valid_0's multi_logloss: 0.214431
[104] valid_0's multi_logloss: 0.213388
[105] valid_0's multi_logloss: 0.212257
[106] valid_0's multi_logloss: 0.211264
[107] valid_0's multi_logloss: 0.210495
[108] valid_0's multi_logloss: 0.209359
[109] valid_0's multi_logloss: 0.208354
[110] valid_0's multi_logloss: 0.207519
[111] valid_0's multi_logloss: 0.206722
[112] valid_0's multi_logloss: 0.205968
[113] valid_0's multi_logloss: 0.205027
[114] valid_0's multi_logloss: 0.204238
[115] valid_0's multi_logloss: 0.203296
[116] valid_0's multi_logloss: 0.202397
[117] valid_0's multi_logloss: 0.201475
[118] valid_0's multi_logloss: 0.200795
[119] valid_0's multi_logloss: 0.200209
[120] valid_0's multi_logloss: 0.199363
[121] valid_0's multi_logloss: 0.198794
[122] valid_0's multi_logloss: 0.198155
[123] valid_0's multi_logloss: 0.197407
[124] valid_0's multi_logloss: 0.196754
[125] valid_0's multi_logloss: 0.196054
[126] valid_0's multi_logloss: 0.195542
[127] valid_0's multi_logloss: 0.194944
[128] valid_0's multi_logloss: 0.194308
[129] valid_0's multi_logloss: 0.193734
[130] valid_0's multi_logloss: 0.193106
[131] valid_0's multi_logloss: 0.192472
[132] valid_0's multi_logloss: 0.191918
[133] valid_0's multi_logloss: 0.191398
[134] valid_0's multi_logloss: 0.190854
[135] valid_0's multi_logloss: 0.190271
[136] valid_0's multi_logloss: 0.189633
[137] valid_0's multi_logloss: 0.189135
[138] valid_0's multi_logloss: 0.188523
[139] valid_0's multi_logloss: 0.188078
[140] valid_0's multi_logloss: 0.187593
[141] valid_0's multi_logloss: 0.187113
[142] valid_0's multi_logloss: 0.186671
[143] valid_0's multi_logloss: 0.186318
[144] valid_0's multi_logloss: 0.185856
[145] valid_0's multi_logloss: 0.185468
[146] valid_0's multi_logloss: 0.185134
[147] valid_0's multi_logloss: 0.184678
[148] valid_0's multi_logloss: 0.184291
[149] valid_0's multi_logloss: 0.18391
[150] valid_0's multi_logloss: 0.183549
[151] valid_0's multi_logloss: 0.183223
[152] valid_0's multi_logloss: 0.18294
[153] valid_0's multi_logloss: 0.182569
[154] valid_0's multi_logloss: 0.18223
[155] valid_0's multi_logloss: 0.181809
[156] valid_0's multi_logloss: 0.181463
[157] valid_0's multi_logloss: 0.181255
[158] valid_0's multi_logloss: 0.180925
[159] valid_0's multi_logloss: 0.180541
[160] valid_0's multi_logloss: 0.180191
[161] valid_0's multi_logloss: 0.179921
[162] valid_0's multi_logloss: 0.179594
[163] valid_0's multi_logloss: 0.179222
[164] valid_0's multi_logloss: 0.178893
[165] valid_0's multi_logloss: 0.17859
[166] valid_0's multi_logloss: 0.178218
[167] valid_0's multi_logloss: 0.177889
[168] valid_0's multi_logloss: 0.177572
[169] valid_0's multi_logloss: 0.177257
[170] valid_0's multi_logloss: 0.177001
[171] valid_0's multi_logloss: 0.176754
[172] valid_0's multi_logloss: 0.176466
[173] valid_0's multi_logloss: 0.176227
[174] valid_0's multi_logloss: 0.175945
[175] valid_0's multi_logloss: 0.175701
[176] valid_0's multi_logloss: 0.175401
[177] valid_0's multi_logloss: 0.175183
[178] valid_0's multi_logloss: 0.174971
[179] valid_0's multi_logloss: 0.174788
[180] valid_0's multi_logloss: 0.174552
[181] valid_0's multi_logloss: 0.174324
[182] valid_0's multi_logloss: 0.174104
[183] valid_0's multi_logloss: 0.173869
[184] valid_0's multi_logloss: 0.173671
[185] valid_0's multi_logloss: 0.17349
[186] valid_0's multi_logloss: 0.17325
[187] valid_0's multi_logloss: 0.173095
[188] valid_0's multi_logloss: 0.172865
[189] valid_0's multi_logloss: 0.172645
[190] valid_0's multi_logloss: 0.172455
[191] valid_0's multi_logloss: 0.172241
[192] valid_0's multi_logloss: 0.172084
[193] valid_0's multi_logloss: 0.171947
[194] valid_0's multi_logloss: 0.171784
[195] valid_0's multi_logloss: 0.171577
[196] valid_0's multi_logloss: 0.171403
[197] valid_0's multi_logloss: 0.171217
[198] valid_0's multi_logloss: 0.171047
[199] valid_0's multi_logloss: 0.170889
[200] valid_0's multi_logloss: 0.17071
[201] valid_0's multi_logloss: 0.170549
[202] valid_0's multi_logloss: 0.170431
[203] valid_0's multi_logloss: 0.170303
[204] valid_0's multi_logloss: 0.170181
[205] valid_0's multi_logloss: 0.170089
[206] valid_0's multi_logloss: 0.169925
[207] valid_0's multi_logloss: 0.169806
[208] valid_0's multi_logloss: 0.169696
[209] valid_0's multi_logloss: 0.169555
[210] valid_0's multi_logloss: 0.169397
[211] valid_0's multi_logloss: 0.169288
[212] valid_0's multi_logloss: 0.16917
[213] valid_0's multi_logloss: 0.169086
[214] valid_0's multi_logloss: 0.168978
[215] valid_0's multi_logloss: 0.168874
[216] valid_0's multi_logloss: 0.168724
[217] valid_0's multi_logloss: 0.16863
[218] valid_0's multi_logloss: 0.168537
[219] valid_0's multi_logloss: 0.168403
[220] valid_0's multi_logloss: 0.168293
[221] valid_0's multi_logloss: 0.168143
[222] valid_0's multi_logloss: 0.168068
[223] valid_0's multi_logloss: 0.167962
[224] valid_0's multi_logloss: 0.167856
[225] valid_0's multi_logloss: 0.16775
[226] valid_0's multi_logloss: 0.167649
[227] valid_0's multi_logloss: 0.167568
[228] valid_0's multi_logloss: 0.16746
[229] valid_0's multi_logloss: 0.167354
[230] valid_0's multi_logloss: 0.167221
[231] valid_0's multi_logloss: 0.167103
[232] valid_0's multi_logloss: 0.167009
[233] valid_0's multi_logloss: 0.166936
[234] valid_0's multi_logloss: 0.166853
[235] valid_0's multi_logloss: 0.166757
[236] valid_0's multi_logloss: 0.16668
[237] valid_0's multi_logloss: 0.166582
[238] valid_0's multi_logloss: 0.166519
[239] valid_0's multi_logloss: 0.166405
[240] valid_0's multi_logloss: 0.166328
[241] valid_0's multi_logloss: 0.166262
[242] valid_0's multi_logloss: 0.166205
[243] valid_0's multi_logloss: 0.16613
[244] valid_0's multi_logloss: 0.166036
[245] valid_0's multi_logloss: 0.16601
[246] valid_0's multi_logloss: 0.165949
[247] valid_0's multi_logloss: 0.16591
[248] valid_0's multi_logloss: 0.165847
[249] valid_0's multi_logloss: 0.165775
[250] valid_0's multi_logloss: 0.165717
[251] valid_0's multi_logloss: 0.165655
[252] valid_0's multi_logloss: 0.165593
[253] valid_0's multi_logloss: 0.165544
[254] valid_0's multi_logloss: 0.165497
[255] valid_0's multi_logloss: 0.165438
[256] valid_0's multi_logloss: 0.165386
[257] valid_0's multi_logloss: 0.165308
[258] valid_0's multi_logloss: 0.16524
[259] valid_0's multi_logloss: 0.165175
[260] valid_0's multi_logloss: 0.16511
[261] valid_0's multi_logloss: 0.165056
[262] valid_0's multi_logloss: 0.164999
[263] valid_0's multi_logloss: 0.164932
[264] valid_0's multi_logloss: 0.16485
[265] valid_0's multi_logloss: 0.164809
[266] valid_0's multi_logloss: 0.164743
[267] valid_0's multi_logloss: 0.164693
[268] valid_0's multi_logloss: 0.164642
[269] valid_0's multi_logloss: 0.164599
[270] valid_0's multi_logloss: 0.164514
[271] valid_0's multi_logloss: 0.164481
[272] valid_0's multi_logloss: 0.16444
[273] valid_0's multi_logloss: 0.164392
[274] valid_0's multi_logloss: 0.164333
[275] valid_0's multi_logloss: 0.164272
[276] valid_0's multi_logloss: 0.164224
[277] valid_0's multi_logloss: 0.164174
[278] valid_0's multi_logloss: 0.164131
[279] valid_0's multi_logloss: 0.164073
[280] valid_0's multi_logloss: 0.16404
[281] valid_0's multi_logloss: 0.164012
[282] valid_0's multi_logloss: 0.163975
[283] valid_0's multi_logloss: 0.163927
[284] valid_0's multi_logloss: 0.163881
[285] valid_0's multi_logloss: 0.163845
[286] valid_0's multi_logloss: 0.163798
[287] valid_0's multi_logloss: 0.163776
[288] valid_0's multi_logloss: 0.163752
[289] valid_0's multi_logloss: 0.163708
[290] valid_0's multi_logloss: 0.163673
[291] valid_0's multi_logloss: 0.163635
[292] valid_0's multi_logloss: 0.163606
[293] valid_0's multi_logloss: 0.16357
[294] valid_0's multi_logloss: 0.16354
[295] valid_0's multi_logloss: 0.163493
[296] valid_0's multi_logloss: 0.163465
[297] valid_0's multi_logloss: 0.163419
[298] valid_0's multi_logloss: 0.163379
[299] valid_0's multi_logloss: 0.163344
[300] valid_0's multi_logloss: 0.163314
[301] valid_0's multi_logloss: 0.163286
[302] valid_0's multi_logloss: 0.163257
[303] valid_0's multi_logloss: 0.163234
[304] valid_0's multi_logloss: 0.163208
[305] valid_0's multi_logloss: 0.163163
[306] valid_0's multi_logloss: 0.16315
[307] valid_0's multi_logloss: 0.16313
[308] valid_0's multi_logloss: 0.163113
[309] valid_0's multi_logloss: 0.163093
[310] valid_0's multi_logloss: 0.163084
[311] valid_0's multi_logloss: 0.163057
[312] valid_0's multi_logloss: 0.163017
[313] valid_0's multi_logloss: 0.162978
[314] valid_0's multi_logloss: 0.162949
[315] valid_0's multi_logloss: 0.162913
[316] valid_0's multi_logloss: 0.162894
[317] valid_0's multi_logloss: 0.162864
[318] valid_0's multi_logloss: 0.162854
[319] valid_0's multi_logloss: 0.162832
[320] valid_0's multi_logloss: 0.162806
[321] valid_0's multi_logloss: 0.162767
[322] valid_0's multi_logloss: 0.162752
[323] valid_0's multi_logloss: 0.162725
[324] valid_0's multi_logloss: 0.162703
[325] valid_0's multi_logloss: 0.162672
[326] valid_0's multi_logloss: 0.162644
[327] valid_0's multi_logloss: 0.162617
[328] valid_0's multi_logloss: 0.162584
[329] valid_0's multi_logloss: 0.162558
[330] valid_0's multi_logloss: 0.16254
[331] valid_0's multi_logloss: 0.162517
[332] valid_0's multi_logloss: 0.1625
[333] valid_0's multi_logloss: 0.162479
[334] valid_0's multi_logloss: 0.162452
[335] valid_0's multi_logloss: 0.162436
[336] valid_0's multi_logloss: 0.162417
[337] valid_0's multi_logloss: 0.162394
[338] valid_0's multi_logloss: 0.162375
[339] valid_0's multi_logloss: 0.162352
[340] valid_0's multi_logloss: 0.162334
[341] valid_0's multi_logloss: 0.162321
[342] valid_0's multi_logloss: 0.162312
[343] valid_0's multi_logloss: 0.162304
[344] valid_0's multi_logloss: 0.162295
[345] valid_0's multi_logloss: 0.162286
[346] valid_0's multi_logloss: 0.162249
[347] valid_0's multi_logloss: 0.162237
[348] valid_0's multi_logloss: 0.162198
[349] valid_0's multi_logloss: 0.162179
[350] valid_0's multi_logloss: 0.162158
[351] valid_0's multi_logloss: 0.162122
[352] valid_0's multi_logloss: 0.162114
[353] valid_0's multi_logloss: 0.162098
[354] valid_0's multi_logloss: 0.162091
[355] valid_0's multi_logloss: 0.162071
[356] valid_0's multi_logloss: 0.162066
[357] valid_0's multi_logloss: 0.162048
[358] valid_0's multi_logloss: 0.162037
[359] valid_0's multi_logloss: 0.162028
[360] valid_0's multi_logloss: 0.162016
[361] valid_0's multi_logloss: 0.161995
[362] valid_0's multi_logloss: 0.161986
[363] valid_0's multi_logloss: 0.161974
[364] valid_0's multi_logloss: 0.161965
[365] valid_0's multi_logloss: 0.161955
[366] valid_0's multi_logloss: 0.161946
[367] valid_0's multi_logloss: 0.161937
[368] valid_0's multi_logloss: 0.161917
[369] valid_0's multi_logloss: 0.161907
[370] valid_0's multi_logloss: 0.161907
[371] valid_0's multi_logloss: 0.161903
[372] valid_0's multi_logloss: 0.161883
[373] valid_0's multi_logloss: 0.161861
[374] valid_0's multi_logloss: 0.16184
[375] valid_0's multi_logloss: 0.161815
[376] valid_0's multi_logloss: 0.16179
[377] valid_0's multi_logloss: 0.161792
[378] valid_0's multi_logloss: 0.161776
[379] valid_0's multi_logloss: 0.16177
[380] valid_0's multi_logloss: 0.161768
[381] valid_0's multi_logloss: 0.161764
[382] valid_0's multi_logloss: 0.161751
[383] valid_0's multi_logloss: 0.161754
[384] valid_0's multi_logloss: 0.161753
[385] valid_0's multi_logloss: 0.161759
[386] valid_0's multi_logloss: 0.161747
[387] valid_0's multi_logloss: 0.161721
[388] valid_0's multi_logloss: 0.161695
[389] valid_0's multi_logloss: 0.161673
[390] valid_0's multi_logloss: 0.161662
[391] valid_0's multi_logloss: 0.161645
[392] valid_0's multi_logloss: 0.161632
[393] valid_0's multi_logloss: 0.161617
[394] valid_0's multi_logloss: 0.161609
[395] valid_0's multi_logloss: 0.161591
[396] valid_0's multi_logloss: 0.161577
[397] valid_0's multi_logloss: 0.161566
[398] valid_0's multi_logloss: 0.161549
[399] valid_0's multi_logloss: 0.161542
[400] valid_0's multi_logloss: 0.161538
[401] valid_0's multi_logloss: 0.161531
[402] valid_0's multi_logloss: 0.161508
[403] valid_0's multi_logloss: 0.161502
[404] valid_0's multi_logloss: 0.161503
[405] valid_0's multi_logloss: 0.1615
[406] valid_0's multi_logloss: 0.161495
[407] valid_0's multi_logloss: 0.1615
[408] valid_0's multi_logloss: 0.161495
[409] valid_0's multi_logloss: 0.161489
[410] valid_0's multi_logloss: 0.161482
[411] valid_0's multi_logloss: 0.161474
[412] valid_0's multi_logloss: 0.161465
[413] valid_0's multi_logloss: 0.16145
[414] valid_0's multi_logloss: 0.161427
[415] valid_0's multi_logloss: 0.161424
[416] valid_0's multi_logloss: 0.161418
[417] valid_0's multi_logloss: 0.161406
[418] valid_0's multi_logloss: 0.161379
[419] valid_0's multi_logloss: 0.161368
[420] valid_0's multi_logloss: 0.161372
[421] valid_0's multi_logloss: 0.161348
[422] valid_0's multi_logloss: 0.161338
[423] valid_0's multi_logloss: 0.161334
[424] valid_0's multi_logloss: 0.161326
[425] valid_0's multi_logloss: 0.161332
[426] valid_0's multi_logloss: 0.161319
[427] valid_0's multi_logloss: 0.161315
[428] valid_0's multi_logloss: 0.161306
[429] valid_0's multi_logloss: 0.161292
[430] valid_0's multi_logloss: 0.161291
[431] valid_0's multi_logloss: 0.161286
[432] valid_0's multi_logloss: 0.161284
[433] valid_0's multi_logloss: 0.161276
[434] valid_0's multi_logloss: 0.161277
[435] valid_0's multi_logloss: 0.161273
[436] valid_0's multi_logloss: 0.161267
[437] valid_0's multi_logloss: 0.161261
[438] valid_0's multi_logloss: 0.161254
[439] valid_0's multi_logloss: 0.161231
[440] valid_0's multi_logloss: 0.161227
[441] valid_0's multi_logloss: 0.16123
[442] valid_0's multi_logloss: 0.161226
[443] valid_0's multi_logloss: 0.161208
[444] valid_0's multi_logloss: 0.161189
[445] valid_0's multi_logloss: 0.16119
[446] valid_0's multi_logloss: 0.161184
[447] valid_0's multi_logloss: 0.161173
[448] valid_0's multi_logloss: 0.161175
[449] valid_0's multi_logloss: 0.161161
[450] valid_0's multi_logloss: 0.161157
[451] valid_0's multi_logloss: 0.161163
[452] valid_0's multi_logloss: 0.161166
[453] valid_0's multi_logloss: 0.16116
[454] valid_0's multi_logloss: 0.161166
[455] valid_0's multi_logloss: 0.161163
[456] valid_0's multi_logloss: 0.161169
[457] valid_0's multi_logloss: 0.161171
[458] valid_0's multi_logloss: 0.161164
[459] valid_0's multi_logloss: 0.16117
[460] valid_0's multi_logloss: 0.161166
Early stopping, best iteration is:
[450] valid_0's multi_logloss: 0.161157
training model for CV #4
[1] valid_0's multi_logloss: 0.954189
Training until validation scores don't improve for 10 rounds
[2] valid_0's multi_logloss: 0.924709
[3] valid_0's multi_logloss: 0.894819
[4] valid_0's multi_logloss: 0.866771
[5] valid_0's multi_logloss: 0.840116
[6] valid_0's multi_logloss: 0.817088
[7] valid_0's multi_logloss: 0.793985
[8] valid_0's multi_logloss: 0.77324
[9] valid_0's multi_logloss: 0.754335
[10] valid_0's multi_logloss: 0.733415
[11] valid_0's multi_logloss: 0.713528
[12] valid_0's multi_logloss: 0.694498
[13] valid_0's multi_logloss: 0.67631
[14] valid_0's multi_logloss: 0.65865
[15] valid_0's multi_logloss: 0.642275
[16] valid_0's multi_logloss: 0.62741
[17] valid_0's multi_logloss: 0.612429
[18] valid_0's multi_logloss: 0.597863
[19] valid_0's multi_logloss: 0.584319
[20] valid_0's multi_logloss: 0.572051
[21] valid_0's multi_logloss: 0.558968
[22] valid_0's multi_logloss: 0.546362
[23] valid_0's multi_logloss: 0.534446
[24] valid_0's multi_logloss: 0.52397
[25] valid_0's multi_logloss: 0.512993
[26] valid_0's multi_logloss: 0.504106
[27] valid_0's multi_logloss: 0.493937
[28] valid_0's multi_logloss: 0.483846
[29] valid_0's multi_logloss: 0.475204
[30] valid_0's multi_logloss: 0.466174
[31] valid_0's multi_logloss: 0.458364
[32] valid_0's multi_logloss: 0.450026
[33] valid_0's multi_logloss: 0.44134
[34] valid_0's multi_logloss: 0.433006
[35] valid_0's multi_logloss: 0.425141
[36] valid_0's multi_logloss: 0.41783
[37] valid_0's multi_logloss: 0.410987
[38] valid_0's multi_logloss: 0.404354
[39] valid_0's multi_logloss: 0.397885
[40] valid_0's multi_logloss: 0.391674
[41] valid_0's multi_logloss: 0.385638
[42] valid_0's multi_logloss: 0.379782
[43] valid_0's multi_logloss: 0.373743
[44] valid_0's multi_logloss: 0.368906
[45] valid_0's multi_logloss: 0.363829
[46] valid_0's multi_logloss: 0.358891
[47] valid_0's multi_logloss: 0.354212
[48] valid_0's multi_logloss: 0.349384
[49] valid_0's multi_logloss: 0.344243
[50] valid_0's multi_logloss: 0.339962
[51] valid_0's multi_logloss: 0.335293
[52] valid_0's multi_logloss: 0.331076
[53] valid_0's multi_logloss: 0.326821
[54] valid_0's multi_logloss: 0.323022
[55] valid_0's multi_logloss: 0.319151
[56] valid_0's multi_logloss: 0.315738
[57] valid_0's multi_logloss: 0.312414
[58] valid_0's multi_logloss: 0.308976
[59] valid_0's multi_logloss: 0.305214
[60] valid_0's multi_logloss: 0.302045
[61] valid_0's multi_logloss: 0.298325
[62] valid_0's multi_logloss: 0.294983
[63] valid_0's multi_logloss: 0.292264
[64] valid_0's multi_logloss: 0.2892
[65] valid_0's multi_logloss: 0.286127
[66] valid_0's multi_logloss: 0.283405
[67] valid_0's multi_logloss: 0.280333
[68] valid_0's multi_logloss: 0.277269
[69] valid_0's multi_logloss: 0.274808
[70] valid_0's multi_logloss: 0.27191
[71] valid_0's multi_logloss: 0.269506
[72] valid_0's multi_logloss: 0.267119
[73] valid_0's multi_logloss: 0.265347
[74] valid_0's multi_logloss: 0.263062
[75] valid_0's multi_logloss: 0.260553
[76] valid_0's multi_logloss: 0.258513
[77] valid_0's multi_logloss: 0.256173
[78] valid_0's multi_logloss: 0.254255
[79] valid_0's multi_logloss: 0.251976
[80] valid_0's multi_logloss: 0.249988
[81] valid_0's multi_logloss: 0.247897
[82] valid_0's multi_logloss: 0.245758
[83] valid_0's multi_logloss: 0.243877
[84] valid_0's multi_logloss: 0.241876
[85] valid_0's multi_logloss: 0.239892
[86] valid_0's multi_logloss: 0.237985
[87] valid_0's multi_logloss: 0.236413
[88] valid_0's multi_logloss: 0.23502
[89] valid_0's multi_logloss: 0.233399
[90] valid_0's multi_logloss: 0.231801
[91] valid_0's multi_logloss: 0.230173
[92] valid_0's multi_logloss: 0.228809
[93] valid_0's multi_logloss: 0.227394
[94] valid_0's multi_logloss: 0.225921
[95] valid_0's multi_logloss: 0.224586
[96] valid_0's multi_logloss: 0.223169
[97] valid_0's multi_logloss: 0.221879
[98] valid_0's multi_logloss: 0.220502
[99] valid_0's multi_logloss: 0.219262
[100] valid_0's multi_logloss: 0.217985
[101] valid_0's multi_logloss: 0.216887
[102] valid_0's multi_logloss: 0.215753
[103] valid_0's multi_logloss: 0.214501
[104] valid_0's multi_logloss: 0.213435
[105] valid_0's multi_logloss: 0.212332
[106] valid_0's multi_logloss: 0.211329
[107] valid_0's multi_logloss: 0.210541
[108] valid_0's multi_logloss: 0.209394
[109] valid_0's multi_logloss: 0.208401
[110] valid_0's multi_logloss: 0.207612
[111] valid_0's multi_logloss: 0.206832
[112] valid_0's multi_logloss: 0.206084
[113] valid_0's multi_logloss: 0.205136
[114] valid_0's multi_logloss: 0.204377
[115] valid_0's multi_logloss: 0.20344
[116] valid_0's multi_logloss: 0.202559
[117] valid_0's multi_logloss: 0.201662
[118] valid_0's multi_logloss: 0.200966
[119] valid_0's multi_logloss: 0.200379
[120] valid_0's multi_logloss: 0.199538
[121] valid_0's multi_logloss: 0.198951
[122] valid_0's multi_logloss: 0.198338
[123] valid_0's multi_logloss: 0.197588
[124] valid_0's multi_logloss: 0.196953
[125] valid_0's multi_logloss: 0.196269
[126] valid_0's multi_logloss: 0.195728
[127] valid_0's multi_logloss: 0.195136
[128] valid_0's multi_logloss: 0.194506
[129] valid_0's multi_logloss: 0.19394
[130] valid_0's multi_logloss: 0.193311
[131] valid_0's multi_logloss: 0.19269
[132] valid_0's multi_logloss: 0.192124
[133] valid_0's multi_logloss: 0.191604
[134] valid_0's multi_logloss: 0.19106
[135] valid_0's multi_logloss: 0.190493
[136] valid_0's multi_logloss: 0.189892
[137] valid_0's multi_logloss: 0.189395
[138] valid_0's multi_logloss: 0.188786
[139] valid_0's multi_logloss: 0.188364
[140] valid_0's multi_logloss: 0.1879
[141] valid_0's multi_logloss: 0.187462
[142] valid_0's multi_logloss: 0.187023
[143] valid_0's multi_logloss: 0.18668
[144] valid_0's multi_logloss: 0.186197
[145] valid_0's multi_logloss: 0.185797
[146] valid_0's multi_logloss: 0.185459
[147] valid_0's multi_logloss: 0.184992
[148] valid_0's multi_logloss: 0.184611
[149] valid_0's multi_logloss: 0.18422
[150] valid_0's multi_logloss: 0.183863
[151] valid_0's multi_logloss: 0.183496
[152] valid_0's multi_logloss: 0.183231
[153] valid_0's multi_logloss: 0.182855
[154] valid_0's multi_logloss: 0.18253
[155] valid_0's multi_logloss: 0.182101
[156] valid_0's multi_logloss: 0.181763
[157] valid_0's multi_logloss: 0.181562
[158] valid_0's multi_logloss: 0.181213
[159] valid_0's multi_logloss: 0.180805
[160] valid_0's multi_logloss: 0.180475
[161] valid_0's multi_logloss: 0.180214
[162] valid_0's multi_logloss: 0.179894
[163] valid_0's multi_logloss: 0.179522
[164] valid_0's multi_logloss: 0.179209
[165] valid_0's multi_logloss: 0.178904
[166] valid_0's multi_logloss: 0.178545
[167] valid_0's multi_logloss: 0.178223
[168] valid_0's multi_logloss: 0.177913
[169] valid_0's multi_logloss: 0.177585
[170] valid_0's multi_logloss: 0.177332
[171] valid_0's multi_logloss: 0.177032
[172] valid_0's multi_logloss: 0.176723
[173] valid_0's multi_logloss: 0.17647
[174] valid_0's multi_logloss: 0.176181
[175] valid_0's multi_logloss: 0.175946
[176] valid_0's multi_logloss: 0.175673
[177] valid_0's multi_logloss: 0.175458
[178] valid_0's multi_logloss: 0.175235
[179] valid_0's multi_logloss: 0.175049
[180] valid_0's multi_logloss: 0.174812
[181] valid_0's multi_logloss: 0.174595
[182] valid_0's multi_logloss: 0.174374
[183] valid_0's multi_logloss: 0.174125
[184] valid_0's multi_logloss: 0.173943
[185] valid_0's multi_logloss: 0.173739
[186] valid_0's multi_logloss: 0.173502
[187] valid_0's multi_logloss: 0.173329
[188] valid_0's multi_logloss: 0.173135
[189] valid_0's multi_logloss: 0.172902
[190] valid_0's multi_logloss: 0.172691
[191] valid_0's multi_logloss: 0.172475
[192] valid_0's multi_logloss: 0.17233
[193] valid_0's multi_logloss: 0.172178
[194] valid_0's multi_logloss: 0.172011
[195] valid_0's multi_logloss: 0.171808
[196] valid_0's multi_logloss: 0.171647
[197] valid_0's multi_logloss: 0.171438
[198] valid_0's multi_logloss: 0.171258
[199] valid_0's multi_logloss: 0.171101
[200] valid_0's multi_logloss: 0.170928
[201] valid_0's multi_logloss: 0.170762
[202] valid_0's multi_logloss: 0.170659
[203] valid_0's multi_logloss: 0.17051
[204] valid_0's multi_logloss: 0.170386
[205] valid_0's multi_logloss: 0.170299
[206] valid_0's multi_logloss: 0.170123
[207] valid_0's multi_logloss: 0.170011
[208] valid_0's multi_logloss: 0.1699
[209] valid_0's multi_logloss: 0.16974
[210] valid_0's multi_logloss: 0.16958
[211] valid_0's multi_logloss: 0.169506
[212] valid_0's multi_logloss: 0.169359
[213] valid_0's multi_logloss: 0.169267
[214] valid_0's multi_logloss: 0.169156
[215] valid_0's multi_logloss: 0.169032
[216] valid_0's multi_logloss: 0.168879
[217] valid_0's multi_logloss: 0.16877
[218] valid_0's multi_logloss: 0.168685
[219] valid_0's multi_logloss: 0.168579
[220] valid_0's multi_logloss: 0.168479
[221] valid_0's multi_logloss: 0.168353
[222] valid_0's multi_logloss: 0.168263
[223] valid_0's multi_logloss: 0.168146
[224] valid_0's multi_logloss: 0.16804
[225] valid_0's multi_logloss: 0.167907
[226] valid_0's multi_logloss: 0.167848
[227] valid_0's multi_logloss: 0.167765
[228] valid_0's multi_logloss: 0.167662
[229] valid_0's multi_logloss: 0.167557
[230] valid_0's multi_logloss: 0.167462
[231] valid_0's multi_logloss: 0.167358
[232] valid_0's multi_logloss: 0.1673
[233] valid_0's multi_logloss: 0.167224
[234] valid_0's multi_logloss: 0.167117
[235] valid_0's multi_logloss: 0.167027
[236] valid_0's multi_logloss: 0.166948
[237] valid_0's multi_logloss: 0.16687
[238] valid_0's multi_logloss: 0.166811
[239] valid_0's multi_logloss: 0.166704
[240] valid_0's multi_logloss: 0.166626
[241] valid_0's multi_logloss: 0.166544
[242] valid_0's multi_logloss: 0.16648
[243] valid_0's multi_logloss: 0.166389
[244] valid_0's multi_logloss: 0.166296
[245] valid_0's multi_logloss: 0.166255
[246] valid_0's multi_logloss: 0.166207
[247] valid_0's multi_logloss: 0.166147
[248] valid_0's multi_logloss: 0.166082
[249] valid_0's multi_logloss: 0.166008
[250] valid_0's multi_logloss: 0.165943
[251] valid_0's multi_logloss: 0.165886
[252] valid_0's multi_logloss: 0.165834
[253] valid_0's multi_logloss: 0.165767
[254] valid_0's multi_logloss: 0.165711
[255] valid_0's multi_logloss: 0.165643
[256] valid_0's multi_logloss: 0.165589
[257] valid_0's multi_logloss: 0.16549
[258] valid_0's multi_logloss: 0.165431
[259] valid_0's multi_logloss: 0.165366
[260] valid_0's multi_logloss: 0.165285
[261] valid_0's multi_logloss: 0.165228
[262] valid_0's multi_logloss: 0.16517
[263] valid_0's multi_logloss: 0.165127
[264] valid_0's multi_logloss: 0.165073
[265] valid_0's multi_logloss: 0.16503
[266] valid_0's multi_logloss: 0.164981
[267] valid_0's multi_logloss: 0.164933
[268] valid_0's multi_logloss: 0.164885
[269] valid_0's multi_logloss: 0.164836
[270] valid_0's multi_logloss: 0.164774
[271] valid_0's multi_logloss: 0.16473
[272] valid_0's multi_logloss: 0.164668
[273] valid_0's multi_logloss: 0.164627
[274] valid_0's multi_logloss: 0.164571
[275] valid_0's multi_logloss: 0.164511
[276] valid_0's multi_logloss: 0.164467
[277] valid_0's multi_logloss: 0.164425
[278] valid_0's multi_logloss: 0.164382
[279] valid_0's multi_logloss: 0.164348
[280] valid_0's multi_logloss: 0.164295
[281] valid_0's multi_logloss: 0.164259
[282] valid_0's multi_logloss: 0.164229
[283] valid_0's multi_logloss: 0.164178
[284] valid_0's multi_logloss: 0.16413
[285] valid_0's multi_logloss: 0.164071
[286] valid_0's multi_logloss: 0.164044
[287] valid_0's multi_logloss: 0.164016
[288] valid_0's multi_logloss: 0.163988
[289] valid_0's multi_logloss: 0.163941
[290] valid_0's multi_logloss: 0.163906
[291] valid_0's multi_logloss: 0.163877
[292] valid_0's multi_logloss: 0.163838
[293] valid_0's multi_logloss: 0.163812
[294] valid_0's multi_logloss: 0.163758
[295] valid_0's multi_logloss: 0.163703
[296] valid_0's multi_logloss: 0.163652
[297] valid_0's multi_logloss: 0.163608
[298] valid_0's multi_logloss: 0.163576
[299] valid_0's multi_logloss: 0.163541
[300] valid_0's multi_logloss: 0.163513
[301] valid_0's multi_logloss: 0.163486
[302] valid_0's multi_logloss: 0.163471
[303] valid_0's multi_logloss: 0.163435
[304] valid_0's multi_logloss: 0.163398
[305] valid_0's multi_logloss: 0.163364
[306] valid_0's multi_logloss: 0.16333
[307] valid_0's multi_logloss: 0.163292
[308] valid_0's multi_logloss: 0.163276
[309] valid_0's multi_logloss: 0.163245
[310] valid_0's multi_logloss: 0.16324
[311] valid_0's multi_logloss: 0.163204
[312] valid_0's multi_logloss: 0.16318
[313] valid_0's multi_logloss: 0.163164
[314] valid_0's multi_logloss: 0.16313
[315] valid_0's multi_logloss: 0.163108
[316] valid_0's multi_logloss: 0.163087
[317] valid_0's multi_logloss: 0.163053
[318] valid_0's multi_logloss: 0.163017
[319] valid_0's multi_logloss: 0.162989
[320] valid_0's multi_logloss: 0.162972
[321] valid_0's multi_logloss: 0.162948
[322] valid_0's multi_logloss: 0.162911
[323] valid_0's multi_logloss: 0.16288
[324] valid_0's multi_logloss: 0.162877
[325] valid_0's multi_logloss: 0.16285
[326] valid_0's multi_logloss: 0.162833
[327] valid_0's multi_logloss: 0.162807
[328] valid_0's multi_logloss: 0.162788
[329] valid_0's multi_logloss: 0.162769
[330] valid_0's multi_logloss: 0.162752
[331] valid_0's multi_logloss: 0.162739
[332] valid_0's multi_logloss: 0.162719
[333] valid_0's multi_logloss: 0.162693
[334] valid_0's multi_logloss: 0.162675
[335] valid_0's multi_logloss: 0.162668
[336] valid_0's multi_logloss: 0.16264
[337] valid_0's multi_logloss: 0.16262
[338] valid_0's multi_logloss: 0.162606
[339] valid_0's multi_logloss: 0.162595
[340] valid_0's multi_logloss: 0.162583
[341] valid_0's multi_logloss: 0.162561
[342] valid_0's multi_logloss: 0.162551
[343] valid_0's multi_logloss: 0.162529
[344] valid_0's multi_logloss: 0.162507
[345] valid_0's multi_logloss: 0.162478
[346] valid_0's multi_logloss: 0.16246
[347] valid_0's multi_logloss: 0.16244
[348] valid_0's multi_logloss: 0.16242
[349] valid_0's multi_logloss: 0.162417
[350] valid_0's multi_logloss: 0.16241
[351] valid_0's multi_logloss: 0.162389
[352] valid_0's multi_logloss: 0.162362
[353] valid_0's multi_logloss: 0.162339
[354] valid_0's multi_logloss: 0.16233
[355] valid_0's multi_logloss: 0.162295
[356] valid_0's multi_logloss: 0.162282
[357] valid_0's multi_logloss: 0.162263
[358] valid_0's multi_logloss: 0.16226
[359] valid_0's multi_logloss: 0.162249
[360] valid_0's multi_logloss: 0.162228
[361] valid_0's multi_logloss: 0.162211
[362] valid_0's multi_logloss: 0.162205
[363] valid_0's multi_logloss: 0.162207
[364] valid_0's multi_logloss: 0.162198
[365] valid_0's multi_logloss: 0.162186
[366] valid_0's multi_logloss: 0.162183
[367] valid_0's multi_logloss: 0.162167
[368] valid_0's multi_logloss: 0.162151
[369] valid_0's multi_logloss: 0.162132
[370] valid_0's multi_logloss: 0.162118
[371] valid_0's multi_logloss: 0.16211
[372] valid_0's multi_logloss: 0.162102
[373] valid_0's multi_logloss: 0.16208
[374] valid_0's multi_logloss: 0.162067
[375] valid_0's multi_logloss: 0.16206
[376] valid_0's multi_logloss: 0.162058
[377] valid_0's multi_logloss: 0.162034
[378] valid_0's multi_logloss: 0.162042
[379] valid_0's multi_logloss: 0.162036
[380] valid_0's multi_logloss: 0.162018
[381] valid_0's multi_logloss: 0.162022
[382] valid_0's multi_logloss: 0.162009
[383] valid_0's multi_logloss: 0.162001
[384] valid_0's multi_logloss: 0.161985
[385] valid_0's multi_logloss: 0.161977
[386] valid_0's multi_logloss: 0.16196
[387] valid_0's multi_logloss: 0.161939
[388] valid_0's multi_logloss: 0.161936
[389] valid_0's multi_logloss: 0.161934
[390] valid_0's multi_logloss: 0.161913
[391] valid_0's multi_logloss: 0.161886
[392] valid_0's multi_logloss: 0.161877
[393] valid_0's multi_logloss: 0.161868
[394] valid_0's multi_logloss: 0.161859
[395] valid_0's multi_logloss: 0.161858
[396] valid_0's multi_logloss: 0.16185
[397] valid_0's multi_logloss: 0.161822
[398] valid_0's multi_logloss: 0.161816
[399] valid_0's multi_logloss: 0.161809
[400] valid_0's multi_logloss: 0.161807
[401] valid_0's multi_logloss: 0.161796
[402] valid_0's multi_logloss: 0.16179
[403] valid_0's multi_logloss: 0.161779
[404] valid_0's multi_logloss: 0.161777
[405] valid_0's multi_logloss: 0.161775
[406] valid_0's multi_logloss: 0.161752
[407] valid_0's multi_logloss: 0.161756
[408] valid_0's multi_logloss: 0.16175
[409] valid_0's multi_logloss: 0.161737
[410] valid_0's multi_logloss: 0.161723
[411] valid_0's multi_logloss: 0.161719
[412] valid_0's multi_logloss: 0.161722
[413] valid_0's multi_logloss: 0.161715
[414] valid_0's multi_logloss: 0.16171
[415] valid_0's multi_logloss: 0.161716
[416] valid_0's multi_logloss: 0.161714
[417] valid_0's multi_logloss: 0.161718
[418] valid_0's multi_logloss: 0.161718
[419] valid_0's multi_logloss: 0.16171
[420] valid_0's multi_logloss: 0.161704
[421] valid_0's multi_logloss: 0.161686
[422] valid_0's multi_logloss: 0.161669
[423] valid_0's multi_logloss: 0.161663
[424] valid_0's multi_logloss: 0.161663
[425] valid_0's multi_logloss: 0.161654
[426] valid_0's multi_logloss: 0.161655
[427] valid_0's multi_logloss: 0.161651
[428] valid_0's multi_logloss: 0.161638
[429] valid_0's multi_logloss: 0.161632
[430] valid_0's multi_logloss: 0.161629
[431] valid_0's multi_logloss: 0.161617
[432] valid_0's multi_logloss: 0.16162
[433] valid_0's multi_logloss: 0.16161
[434] valid_0's multi_logloss: 0.161605
[435] valid_0's multi_logloss: 0.161601
[436] valid_0's multi_logloss: 0.1616
[437] valid_0's multi_logloss: 0.16159
[438] valid_0's multi_logloss: 0.161587
[439] valid_0's multi_logloss: 0.161584
[440] valid_0's multi_logloss: 0.161582
[441] valid_0's multi_logloss: 0.161562
[442] valid_0's multi_logloss: 0.161545
[443] valid_0's multi_logloss: 0.161547
[444] valid_0's multi_logloss: 0.161542
[445] valid_0's multi_logloss: 0.161542
[446] valid_0's multi_logloss: 0.161545
[447] valid_0's multi_logloss: 0.161539
[448] valid_0's multi_logloss: 0.161543
[449] valid_0's multi_logloss: 0.161543
[450] valid_0's multi_logloss: 0.161535
[451] valid_0's multi_logloss: 0.161532
[452] valid_0's multi_logloss: 0.16152
[453] valid_0's multi_logloss: 0.161519
[454] valid_0's multi_logloss: 0.161512
[455] valid_0's multi_logloss: 0.161501
[456] valid_0's multi_logloss: 0.161491
[457] valid_0's multi_logloss: 0.161485
[458] valid_0's multi_logloss: 0.161487
[459] valid_0's multi_logloss: 0.16148
[460] valid_0's multi_logloss: 0.161478
[461] valid_0's multi_logloss: 0.161472
[462] valid_0's multi_logloss: 0.161473
[463] valid_0's multi_logloss: 0.161472
[464] valid_0's multi_logloss: 0.161472
[465] valid_0's multi_logloss: 0.161469
[466] valid_0's multi_logloss: 0.161463
[467] valid_0's multi_logloss: 0.161458
[468] valid_0's multi_logloss: 0.161454
[469] valid_0's multi_logloss: 0.161453
[470] valid_0's multi_logloss: 0.161448
[471] valid_0's multi_logloss: 0.16144
[472] valid_0's multi_logloss: 0.161432
[473] valid_0's multi_logloss: 0.161438
[474] valid_0's multi_logloss: 0.161434
[475] valid_0's multi_logloss: 0.161429
[476] valid_0's multi_logloss: 0.161427
[477] valid_0's multi_logloss: 0.161433
[478] valid_0's multi_logloss: 0.161435
[479] valid_0's multi_logloss: 0.161423
[480] valid_0's multi_logloss: 0.16143
[481] valid_0's multi_logloss: 0.161429
[482] valid_0's multi_logloss: 0.161419
[483] valid_0's multi_logloss: 0.161412
[484] valid_0's multi_logloss: 0.161417
[485] valid_0's multi_logloss: 0.161412
[486] valid_0's multi_logloss: 0.161405
[487] valid_0's multi_logloss: 0.161417
[488] valid_0's multi_logloss: 0.161408
[489] valid_0's multi_logloss: 0.161392
[490] valid_0's multi_logloss: 0.161397
[491] valid_0's multi_logloss: 0.161397
[492] valid_0's multi_logloss: 0.161391
[493] valid_0's multi_logloss: 0.161382
[494] valid_0's multi_logloss: 0.161381
[495] valid_0's multi_logloss: 0.161384
[496] valid_0's multi_logloss: 0.161376
[497] valid_0's multi_logloss: 0.161372
[498] valid_0's multi_logloss: 0.161367
[499] valid_0's multi_logloss: 0.161367
[500] valid_0's multi_logloss: 0.161365
[501] valid_0's multi_logloss: 0.161369
[502] valid_0's multi_logloss: 0.161372
[503] valid_0's multi_logloss: 0.161366
[504] valid_0's multi_logloss: 0.161369
[505] valid_0's multi_logloss: 0.161351
[506] valid_0's multi_logloss: 0.161343
[507] valid_0's multi_logloss: 0.161351
[508] valid_0's multi_logloss: 0.161342
[509] valid_0's multi_logloss: 0.161336
[510] valid_0's multi_logloss: 0.161339
[511] valid_0's multi_logloss: 0.161336
[512] valid_0's multi_logloss: 0.161327
[513] valid_0's multi_logloss: 0.161329
[514] valid_0's multi_logloss: 0.161331
[515] valid_0's multi_logloss: 0.161331
[516] valid_0's multi_logloss: 0.161327
[517] valid_0's multi_logloss: 0.161324
[518] valid_0's multi_logloss: 0.161317
[519] valid_0's multi_logloss: 0.161312
[520] valid_0's multi_logloss: 0.161317
[521] valid_0's multi_logloss: 0.161316
[522] valid_0's multi_logloss: 0.161308
[523] valid_0's multi_logloss: 0.161301
[524] valid_0's multi_logloss: 0.161292
[525] valid_0's multi_logloss: 0.161296
[526] valid_0's multi_logloss: 0.161292
[527] valid_0's multi_logloss: 0.161291
[528] valid_0's multi_logloss: 0.161297
[529] valid_0's multi_logloss: 0.161298
[530] valid_0's multi_logloss: 0.161307
[531] valid_0's multi_logloss: 0.161296
[532] valid_0's multi_logloss: 0.161306
[533] valid_0's multi_logloss: 0.1613
[534] valid_0's multi_logloss: 0.161299
[535] valid_0's multi_logloss: 0.161286
[536] valid_0's multi_logloss: 0.161286
[537] valid_0's multi_logloss: 0.161282
[538] valid_0's multi_logloss: 0.161273
[539] valid_0's multi_logloss: 0.161272
[540] valid_0's multi_logloss: 0.161274
[541] valid_0's multi_logloss: 0.161281
[542] valid_0's multi_logloss: 0.161281
[543] valid_0's multi_logloss: 0.161282
[544] valid_0's multi_logloss: 0.161278
[545] valid_0's multi_logloss: 0.161273
[546] valid_0's multi_logloss: 0.16127
[547] valid_0's multi_logloss: 0.161279
[548] valid_0's multi_logloss: 0.16128
[549] valid_0's multi_logloss: 0.161286
[550] valid_0's multi_logloss: 0.161284
[551] valid_0's multi_logloss: 0.161298
[552] valid_0's multi_logloss: 0.161297
[553] valid_0's multi_logloss: 0.161299
[554] valid_0's multi_logloss: 0.161289
[555] valid_0's multi_logloss: 0.161293
[556] valid_0's multi_logloss: 0.161285
Early stopping, best iteration is:
[546] valid_0's multi_logloss: 0.16127
training model for CV #5
[1] valid_0's multi_logloss: 0.954304
Training until validation scores don't improve for 10 rounds
[2] valid_0's multi_logloss: 0.924878
[3] valid_0's multi_logloss: 0.894901
[4] valid_0's multi_logloss: 0.866955
[5] valid_0's multi_logloss: 0.840236
[6] valid_0's multi_logloss: 0.817127
[7] valid_0's multi_logloss: 0.793998
[8] valid_0's multi_logloss: 0.773214
[9] valid_0's multi_logloss: 0.754359
[10] valid_0's multi_logloss: 0.73335
[11] valid_0's multi_logloss: 0.713449
[12] valid_0's multi_logloss: 0.694452
[13] valid_0's multi_logloss: 0.676126
[14] valid_0's multi_logloss: 0.658562
[15] valid_0's multi_logloss: 0.642079
[16] valid_0's multi_logloss: 0.627225
[17] valid_0's multi_logloss: 0.612276
[18] valid_0's multi_logloss: 0.597721
[19] valid_0's multi_logloss: 0.584077
[20] valid_0's multi_logloss: 0.571632
[21] valid_0's multi_logloss: 0.558593
[22] valid_0's multi_logloss: 0.545987
[23] valid_0's multi_logloss: 0.534032
[24] valid_0's multi_logloss: 0.523546
[25] valid_0's multi_logloss: 0.51256
[26] valid_0's multi_logloss: 0.503683
[27] valid_0's multi_logloss: 0.493512
[28] valid_0's multi_logloss: 0.483305
[29] valid_0's multi_logloss: 0.474697
[30] valid_0's multi_logloss: 0.46564
[31] valid_0's multi_logloss: 0.457829
[32] valid_0's multi_logloss: 0.449476
[33] valid_0's multi_logloss: 0.440822
[34] valid_0's multi_logloss: 0.432529
[35] valid_0's multi_logloss: 0.424637
[36] valid_0's multi_logloss: 0.417437
[37] valid_0's multi_logloss: 0.410601
[38] valid_0's multi_logloss: 0.403977
[39] valid_0's multi_logloss: 0.39755
[40] valid_0's multi_logloss: 0.39134
[41] valid_0's multi_logloss: 0.385308
[42] valid_0's multi_logloss: 0.379451
[43] valid_0's multi_logloss: 0.373503
[44] valid_0's multi_logloss: 0.368619
[45] valid_0's multi_logloss: 0.363466
[46] valid_0's multi_logloss: 0.358546
[47] valid_0's multi_logloss: 0.353759
[48] valid_0's multi_logloss: 0.348934
[49] valid_0's multi_logloss: 0.343782
[50] valid_0's multi_logloss: 0.339517
[51] valid_0's multi_logloss: 0.334837
[52] valid_0's multi_logloss: 0.330646
[53] valid_0's multi_logloss: 0.326413
[54] valid_0's multi_logloss: 0.322597
[55] valid_0's multi_logloss: 0.318762
[56] valid_0's multi_logloss: 0.315299
[57] valid_0's multi_logloss: 0.311966
[58] valid_0's multi_logloss: 0.308558
[59] valid_0's multi_logloss: 0.30475
[60] valid_0's multi_logloss: 0.301579
[61] valid_0's multi_logloss: 0.297931
[62] valid_0's multi_logloss: 0.29462
[63] valid_0's multi_logloss: 0.291888
[64] valid_0's multi_logloss: 0.288803
[65] valid_0's multi_logloss: 0.285699
[66] valid_0's multi_logloss: 0.282943
[67] valid_0's multi_logloss: 0.279868
[68] valid_0's multi_logloss: 0.276805
[69] valid_0's multi_logloss: 0.274304
[70] valid_0's multi_logloss: 0.271467
[71] valid_0's multi_logloss: 0.269041
[72] valid_0's multi_logloss: 0.26664
[73] valid_0's multi_logloss: 0.264853
[74] valid_0's multi_logloss: 0.262581
[75] valid_0's multi_logloss: 0.260055
[76] valid_0's multi_logloss: 0.25797
[77] valid_0's multi_logloss: 0.255619
[78] valid_0's multi_logloss: 0.253683
[79] valid_0's multi_logloss: 0.251404
[80] valid_0's multi_logloss: 0.249424
[81] valid_0's multi_logloss: 0.247311
[82] valid_0's multi_logloss: 0.245169
[83] valid_0's multi_logloss: 0.243308
[84] valid_0's multi_logloss: 0.241302
[85] valid_0's multi_logloss: 0.239294
[86] valid_0's multi_logloss: 0.237374
[87] valid_0's multi_logloss: 0.235782
[88] valid_0's multi_logloss: 0.234365
[89] valid_0's multi_logloss: 0.232709
[90] valid_0's multi_logloss: 0.231068
[91] valid_0's multi_logloss: 0.229469
[92] valid_0's multi_logloss: 0.228109
[93] valid_0's multi_logloss: 0.226676
[94] valid_0's multi_logloss: 0.225163
[95] valid_0's multi_logloss: 0.22377
[96] valid_0's multi_logloss: 0.222339
[97] valid_0's multi_logloss: 0.221035
[98] valid_0's multi_logloss: 0.219617
[99] valid_0's multi_logloss: 0.218392
[100] valid_0's multi_logloss: 0.217122
[101] valid_0's multi_logloss: 0.216014
[102] valid_0's multi_logloss: 0.214903
[103] valid_0's multi_logloss: 0.213664
[104] valid_0's multi_logloss: 0.21262
[105] valid_0's multi_logloss: 0.211526
[106] valid_0's multi_logloss: 0.210532
[107] valid_0's multi_logloss: 0.209785
[108] valid_0's multi_logloss: 0.208645
[109] valid_0's multi_logloss: 0.207631
[110] valid_0's multi_logloss: 0.206837
[111] valid_0's multi_logloss: 0.20605
[112] valid_0's multi_logloss: 0.205302
[113] valid_0's multi_logloss: 0.204346
[114] valid_0's multi_logloss: 0.203591
[115] valid_0's multi_logloss: 0.202693
[116] valid_0's multi_logloss: 0.201813
[117] valid_0's multi_logloss: 0.200866
[118] valid_0's multi_logloss: 0.200163
[119] valid_0's multi_logloss: 0.199571
[120] valid_0's multi_logloss: 0.198734
[121] valid_0's multi_logloss: 0.198128
[122] valid_0's multi_logloss: 0.197518
[123] valid_0's multi_logloss: 0.196752
[124] valid_0's multi_logloss: 0.196079
[125] valid_0's multi_logloss: 0.195386
[126] valid_0's multi_logloss: 0.194888
[127] valid_0's multi_logloss: 0.194301
[128] valid_0's multi_logloss: 0.193648
[129] valid_0's multi_logloss: 0.193091
[130] valid_0's multi_logloss: 0.192407
[131] valid_0's multi_logloss: 0.191761
[132] valid_0's multi_logloss: 0.191176
[133] valid_0's multi_logloss: 0.190657
[134] valid_0's multi_logloss: 0.190109
[135] valid_0's multi_logloss: 0.189532
[136] valid_0's multi_logloss: 0.188888
[137] valid_0's multi_logloss: 0.188407
[138] valid_0's multi_logloss: 0.187798
[139] valid_0's multi_logloss: 0.187351
[140] valid_0's multi_logloss: 0.186887
[141] valid_0's multi_logloss: 0.186422
[142] valid_0's multi_logloss: 0.185965
[143] valid_0's multi_logloss: 0.185635
[144] valid_0's multi_logloss: 0.185171
[145] valid_0's multi_logloss: 0.184769
[146] valid_0's multi_logloss: 0.18442
[147] valid_0's multi_logloss: 0.183925
[148] valid_0's multi_logloss: 0.183532
[149] valid_0's multi_logloss: 0.183142
[150] valid_0's multi_logloss: 0.182756
[151] valid_0's multi_logloss: 0.182406
[152] valid_0's multi_logloss: 0.182116
[153] valid_0's multi_logloss: 0.181752
[154] valid_0's multi_logloss: 0.181437
[155] valid_0's multi_logloss: 0.181018
[156] valid_0's multi_logloss: 0.180706
[157] valid_0's multi_logloss: 0.180496
[158] valid_0's multi_logloss: 0.180189
[159] valid_0's multi_logloss: 0.179785
[160] valid_0's multi_logloss: 0.17944
[161] valid_0's multi_logloss: 0.17918
[162] valid_0's multi_logloss: 0.178872
[163] valid_0's multi_logloss: 0.178498
[164] valid_0's multi_logloss: 0.178174
[165] valid_0's multi_logloss: 0.177876
[166] valid_0's multi_logloss: 0.177536
[167] valid_0's multi_logloss: 0.177214
[168] valid_0's multi_logloss: 0.176905
[169] valid_0's multi_logloss: 0.17656
[170] valid_0's multi_logloss: 0.176335
[171] valid_0's multi_logloss: 0.176081
[172] valid_0's multi_logloss: 0.175786
[173] valid_0's multi_logloss: 0.175534
[174] valid_0's multi_logloss: 0.175244
[175] valid_0's multi_logloss: 0.175024
[176] valid_0's multi_logloss: 0.174747
[177] valid_0's multi_logloss: 0.174535
[178] valid_0's multi_logloss: 0.174323
[179] valid_0's multi_logloss: 0.174142
[180] valid_0's multi_logloss: 0.173904
[181] valid_0's multi_logloss: 0.173675
[182] valid_0's multi_logloss: 0.173442
[183] valid_0's multi_logloss: 0.173186
[184] valid_0's multi_logloss: 0.172988
[185] valid_0's multi_logloss: 0.172802
[186] valid_0's multi_logloss: 0.172559
[187] valid_0's multi_logloss: 0.1724
[188] valid_0's multi_logloss: 0.172175
[189] valid_0's multi_logloss: 0.171961
[190] valid_0's multi_logloss: 0.171774
[191] valid_0's multi_logloss: 0.171565
[192] valid_0's multi_logloss: 0.171406
[193] valid_0's multi_logloss: 0.171269
[194] valid_0's multi_logloss: 0.171088
[195] valid_0's multi_logloss: 0.170902
[196] valid_0's multi_logloss: 0.170726
[197] valid_0's multi_logloss: 0.17052
[198] valid_0's multi_logloss: 0.170357
[199] valid_0's multi_logloss: 0.170211
[200] valid_0's multi_logloss: 0.170019
[201] valid_0's multi_logloss: 0.169849
[202] valid_0's multi_logloss: 0.16972
[203] valid_0's multi_logloss: 0.169606
[204] valid_0's multi_logloss: 0.169483
[205] valid_0's multi_logloss: 0.169388
[206] valid_0's multi_logloss: 0.169202
[207] valid_0's multi_logloss: 0.169089
[208] valid_0's multi_logloss: 0.168986
[209] valid_0's multi_logloss: 0.168826
[210] valid_0's multi_logloss: 0.168683
[211] valid_0's multi_logloss: 0.168591
[212] valid_0's multi_logloss: 0.168458
[213] valid_0's multi_logloss: 0.168374
[214] valid_0's multi_logloss: 0.168255
[215] valid_0's multi_logloss: 0.16816
[216] valid_0's multi_logloss: 0.168018
[217] valid_0's multi_logloss: 0.167909
[218] valid_0's multi_logloss: 0.167829
[219] valid_0's multi_logloss: 0.167727
[220] valid_0's multi_logloss: 0.167617
[221] valid_0's multi_logloss: 0.167476
[222] valid_0's multi_logloss: 0.167397
[223] valid_0's multi_logloss: 0.167287
[224] valid_0's multi_logloss: 0.167184
[225] valid_0's multi_logloss: 0.16706
[226] valid_0's multi_logloss: 0.166976
[227] valid_0's multi_logloss: 0.166918
[228] valid_0's multi_logloss: 0.166827
[229] valid_0's multi_logloss: 0.166737
[230] valid_0's multi_logloss: 0.166627
[231] valid_0's multi_logloss: 0.166508
[232] valid_0's multi_logloss: 0.16642
[233] valid_0's multi_logloss: 0.166335
[234] valid_0's multi_logloss: 0.166242
[235] valid_0's multi_logloss: 0.166135
[236] valid_0's multi_logloss: 0.166056
[237] valid_0's multi_logloss: 0.165971
[238] valid_0's multi_logloss: 0.165913
[239] valid_0's multi_logloss: 0.165813
[240] valid_0's multi_logloss: 0.165729
[241] valid_0's multi_logloss: 0.165649
[242] valid_0's multi_logloss: 0.165553
[243] valid_0's multi_logloss: 0.165464
[244] valid_0's multi_logloss: 0.165388
[245] valid_0's multi_logloss: 0.16534
[246] valid_0's multi_logloss: 0.165284
[247] valid_0's multi_logloss: 0.165237
[248] valid_0's multi_logloss: 0.165155
[249] valid_0's multi_logloss: 0.165089
[250] valid_0's multi_logloss: 0.165023
[251] valid_0's multi_logloss: 0.164961
[252] valid_0's multi_logloss: 0.164895
[253] valid_0's multi_logloss: 0.164837
[254] valid_0's multi_logloss: 0.164778
[255] valid_0's multi_logloss: 0.164718
[256] valid_0's multi_logloss: 0.164671
[257] valid_0's multi_logloss: 0.164604
[258] valid_0's multi_logloss: 0.164531
[259] valid_0's multi_logloss: 0.164479
[260] valid_0's multi_logloss: 0.164416
[261] valid_0's multi_logloss: 0.164344
[262] valid_0's multi_logloss: 0.164282
[263] valid_0's multi_logloss: 0.164202
[264] valid_0's multi_logloss: 0.164151
[265] valid_0's multi_logloss: 0.164094
[266] valid_0's multi_logloss: 0.164041
[267] valid_0's multi_logloss: 0.163981
[268] valid_0's multi_logloss: 0.163939
[269] valid_0's multi_logloss: 0.163892
[270] valid_0's multi_logloss: 0.16383
[271] valid_0's multi_logloss: 0.16381
[272] valid_0's multi_logloss: 0.163768
[273] valid_0's multi_logloss: 0.16372
[274] valid_0's multi_logloss: 0.163669
[275] valid_0's multi_logloss: 0.163612
[276] valid_0's multi_logloss: 0.163567
[277] valid_0's multi_logloss: 0.163508
[278] valid_0's multi_logloss: 0.163459
[279] valid_0's multi_logloss: 0.163387
[280] valid_0's multi_logloss: 0.163362
[281] valid_0's multi_logloss: 0.163328
[282] valid_0's multi_logloss: 0.163278
[283] valid_0's multi_logloss: 0.163233
[284] valid_0's multi_logloss: 0.163186
[285] valid_0's multi_logloss: 0.163148
[286] valid_0's multi_logloss: 0.163115
[287] valid_0's multi_logloss: 0.163075
[288] valid_0's multi_logloss: 0.163023
[289] valid_0's multi_logloss: 0.163008
[290] valid_0's multi_logloss: 0.16297
[291] valid_0's multi_logloss: 0.16293
[292] valid_0's multi_logloss: 0.162891
[293] valid_0's multi_logloss: 0.162843
[294] valid_0's multi_logloss: 0.162797
[295] valid_0's multi_logloss: 0.162732
[296] valid_0's multi_logloss: 0.16269
[297] valid_0's multi_logloss: 0.162636
[298] valid_0's multi_logloss: 0.16258
[299] valid_0's multi_logloss: 0.162525
[300] valid_0's multi_logloss: 0.162496
[301] valid_0's multi_logloss: 0.162454
[302] valid_0's multi_logloss: 0.162436
[303] valid_0's multi_logloss: 0.162391
[304] valid_0's multi_logloss: 0.162346
[305] valid_0's multi_logloss: 0.162321
[306] valid_0's multi_logloss: 0.162299
[307] valid_0's multi_logloss: 0.162263
[308] valid_0's multi_logloss: 0.162253
[309] valid_0's multi_logloss: 0.162216
[310] valid_0's multi_logloss: 0.162202
[311] valid_0's multi_logloss: 0.162186
[312] valid_0's multi_logloss: 0.162151
[313] valid_0's multi_logloss: 0.162121
[314] valid_0's multi_logloss: 0.162102
[315] valid_0's multi_logloss: 0.162066
[316] valid_0's multi_logloss: 0.162047
[317] valid_0's multi_logloss: 0.162021
[318] valid_0's multi_logloss: 0.161996
[319] valid_0's multi_logloss: 0.16195
[320] valid_0's multi_logloss: 0.161911
[321] valid_0's multi_logloss: 0.16187
[322] valid_0's multi_logloss: 0.161845
[323] valid_0's multi_logloss: 0.161826
[324] valid_0's multi_logloss: 0.161808
[325] valid_0's multi_logloss: 0.161784
[326] valid_0's multi_logloss: 0.161761
[327] valid_0's multi_logloss: 0.161741
[328] valid_0's multi_logloss: 0.161718
[329] valid_0's multi_logloss: 0.161681
[330] valid_0's multi_logloss: 0.16168
[331] valid_0's multi_logloss: 0.161661
[332] valid_0's multi_logloss: 0.161631
[333] valid_0's multi_logloss: 0.161614
[334] valid_0's multi_logloss: 0.161586
[335] valid_0's multi_logloss: 0.161567
[336] valid_0's multi_logloss: 0.161552
[337] valid_0's multi_logloss: 0.161536
[338] valid_0's multi_logloss: 0.161521
[339] valid_0's multi_logloss: 0.161512
[340] valid_0's multi_logloss: 0.161514
[341] valid_0's multi_logloss: 0.161513
[342] valid_0's multi_logloss: 0.161505
[343] valid_0's multi_logloss: 0.161483
[344] valid_0's multi_logloss: 0.161461
[345] valid_0's multi_logloss: 0.161442
[346] valid_0's multi_logloss: 0.161422
[347] valid_0's multi_logloss: 0.161393
[348] valid_0's multi_logloss: 0.16137
[349] valid_0's multi_logloss: 0.161367
[350] valid_0's multi_logloss: 0.161349
[351] valid_0's multi_logloss: 0.161329
[352] valid_0's multi_logloss: 0.16132
[353] valid_0's multi_logloss: 0.161292
[354] valid_0's multi_logloss: 0.161277
[355] valid_0's multi_logloss: 0.161269
[356] valid_0's multi_logloss: 0.161258
[357] valid_0's multi_logloss: 0.161246
[358] valid_0's multi_logloss: 0.161232
[359] valid_0's multi_logloss: 0.161222
[360] valid_0's multi_logloss: 0.16122
[361] valid_0's multi_logloss: 0.161206
[362] valid_0's multi_logloss: 0.161184
[363] valid_0's multi_logloss: 0.161176
[364] valid_0's multi_logloss: 0.161171
[365] valid_0's multi_logloss: 0.161143
[366] valid_0's multi_logloss: 0.161124
[367] valid_0's multi_logloss: 0.161104
[368] valid_0's multi_logloss: 0.161074
[369] valid_0's multi_logloss: 0.161041
[370] valid_0's multi_logloss: 0.161044
[371] valid_0's multi_logloss: 0.161034
[372] valid_0's multi_logloss: 0.161018
[373] valid_0's multi_logloss: 0.161011
[374] valid_0's multi_logloss: 0.160997
[375] valid_0's multi_logloss: 0.16098
[376] valid_0's multi_logloss: 0.160952
[377] valid_0's multi_logloss: 0.16094
[378] valid_0's multi_logloss: 0.160926
[379] valid_0's multi_logloss: 0.160923
[380] valid_0's multi_logloss: 0.160902
[381] valid_0's multi_logloss: 0.1609
[382] valid_0's multi_logloss: 0.160886
[383] valid_0's multi_logloss: 0.16087
[384] valid_0's multi_logloss: 0.160868
[385] valid_0's multi_logloss: 0.160855
[386] valid_0's multi_logloss: 0.160838
[387] valid_0's multi_logloss: 0.160831
[388] valid_0's multi_logloss: 0.160806
[389] valid_0's multi_logloss: 0.160798
[390] valid_0's multi_logloss: 0.160783
[391] valid_0's multi_logloss: 0.16078
[392] valid_0's multi_logloss: 0.160756
[393] valid_0's multi_logloss: 0.160733
[394] valid_0's multi_logloss: 0.160704
[395] valid_0's multi_logloss: 0.160692
[396] valid_0's multi_logloss: 0.160676
[397] valid_0's multi_logloss: 0.160672
[398] valid_0's multi_logloss: 0.160662
[399] valid_0's multi_logloss: 0.160655
[400] valid_0's multi_logloss: 0.160655
[401] valid_0's multi_logloss: 0.160646
[402] valid_0's multi_logloss: 0.160635
[403] valid_0's multi_logloss: 0.160615
[404] valid_0's multi_logloss: 0.160601
[405] valid_0's multi_logloss: 0.160585
[406] valid_0's multi_logloss: 0.160589
[407] valid_0's multi_logloss: 0.160582
[408] valid_0's multi_logloss: 0.160582
[409] valid_0's multi_logloss: 0.16057
[410] valid_0's multi_logloss: 0.160555
[411] valid_0's multi_logloss: 0.160553
[412] valid_0's multi_logloss: 0.160546
[413] valid_0's multi_logloss: 0.160541
[414] valid_0's multi_logloss: 0.160536
[415] valid_0's multi_logloss: 0.160527
[416] valid_0's multi_logloss: 0.16053
[417] valid_0's multi_logloss: 0.160504
[418] valid_0's multi_logloss: 0.160503
[419] valid_0's multi_logloss: 0.160473
[420] valid_0's multi_logloss: 0.160467
[421] valid_0's multi_logloss: 0.160458
[422] valid_0's multi_logloss: 0.160448
[423] valid_0's multi_logloss: 0.160422
[424] valid_0's multi_logloss: 0.160418
[425] valid_0's multi_logloss: 0.160423
[426] valid_0's multi_logloss: 0.160412
[427] valid_0's multi_logloss: 0.160413
[428] valid_0's multi_logloss: 0.160413
[429] valid_0's multi_logloss: 0.160411
[430] valid_0's multi_logloss: 0.160406
[431] valid_0's multi_logloss: 0.160391
[432] valid_0's multi_logloss: 0.160393
[433] valid_0's multi_logloss: 0.160383
[434] valid_0's multi_logloss: 0.16038
[435] valid_0's multi_logloss: 0.160366
[436] valid_0's multi_logloss: 0.160362
[437] valid_0's multi_logloss: 0.160365
[438] valid_0's multi_logloss: 0.160353
[439] valid_0's multi_logloss: 0.16035
[440] valid_0's multi_logloss: 0.160338
[441] valid_0's multi_logloss: 0.160333
[442] valid_0's multi_logloss: 0.160325
[443] valid_0's multi_logloss: 0.160316
[444] valid_0's multi_logloss: 0.160318
[445] valid_0's multi_logloss: 0.160323
[446] valid_0's multi_logloss: 0.160325
[447] valid_0's multi_logloss: 0.160322
[448] valid_0's multi_logloss: 0.160306
[449] valid_0's multi_logloss: 0.160303
[450] valid_0's multi_logloss: 0.160288
[451] valid_0's multi_logloss: 0.160277
[452] valid_0's multi_logloss: 0.160281
[453] valid_0's multi_logloss: 0.160273
[454] valid_0's multi_logloss: 0.160278
[455] valid_0's multi_logloss: 0.160277
[456] valid_0's multi_logloss: 0.160276
[457] valid_0's multi_logloss: 0.160282
[458] valid_0's multi_logloss: 0.160276
[459] valid_0's multi_logloss: 0.160272
[460] valid_0's multi_logloss: 0.16027
[461] valid_0's multi_logloss: 0.160266
[462] valid_0's multi_logloss: 0.160265
[463] valid_0's multi_logloss: 0.160254
[464] valid_0's multi_logloss: 0.160247
[465] valid_0's multi_logloss: 0.160237
[466] valid_0's multi_logloss: 0.160213
[467] valid_0's multi_logloss: 0.160199
[468] valid_0's multi_logloss: 0.160192
[469] valid_0's multi_logloss: 0.160181
[470] valid_0's multi_logloss: 0.160176
[471] valid_0's multi_logloss: 0.160172
[472] valid_0's multi_logloss: 0.160152
[473] valid_0's multi_logloss: 0.160157
[474] valid_0's multi_logloss: 0.160163
[475] valid_0's multi_logloss: 0.160149
[476] valid_0's multi_logloss: 0.160137
[477] valid_0's multi_logloss: 0.160122
[478] valid_0's multi_logloss: 0.160106
[479] valid_0's multi_logloss: 0.160094
[480] valid_0's multi_logloss: 0.160095
[481] valid_0's multi_logloss: 0.160095
[482] valid_0's multi_logloss: 0.16009
[483] valid_0's multi_logloss: 0.160081
[484] valid_0's multi_logloss: 0.160088
[485] valid_0's multi_logloss: 0.160091
[486] valid_0's multi_logloss: 0.160087
[487] valid_0's multi_logloss: 0.160073
[488] valid_0's multi_logloss: 0.16008
[489] valid_0's multi_logloss: 0.160088
[490] valid_0's multi_logloss: 0.160079
[491] valid_0's multi_logloss: 0.160076
[492] valid_0's multi_logloss: 0.160077
[493] valid_0's multi_logloss: 0.160075
[494] valid_0's multi_logloss: 0.160079
[495] valid_0's multi_logloss: 0.160081
[496] valid_0's multi_logloss: 0.160077
[497] valid_0's multi_logloss: 0.160074
Early stopping, best iteration is:
[487] valid_0's multi_logloss: 0.160073
print(f'{accuracy_score(y, np.argmax(p_val, axis=1)) * 100:.4f}%')
93.2728%
print(p_val.shape, p_tst.shape)
(320000, 3) (80000, 3)
np.savetxt(p_val_file, p_val, fmt='%.6f', delimiter=',')
np.savetxt(p_tst_file, p_tst, fmt='%.6f', delimiter=',')
피처 중요도 시각화¶
imp = pd.DataFrame({'feature': df.columns, 'importance': clf.feature_importances_})
imp = imp.sort_values('importance').set_index('feature')
imp.plot(kind='barh')
<matplotlib.axes._subplots.AxesSubplot at 0x7f8040bbac90>
제출 파일 생성¶
sub = pd.read_csv(sample_file, index_col=0)
print(sub.shape)
sub.head()
(80000, 1)
class | |
---|---|
id | |
320000 | 0 |
320001 | 0 |
320002 | 0 |
320003 | 0 |
320004 | 0 |
sub[target_col] = np.argmax(p_tst, axis=1)
sub.head()
class | |
---|---|
id | |
320000 | 2 |
320001 | 0 |
320002 | 2 |
320003 | 0 |
320004 | 2 |
sub[target_col].value_counts()
2 41076
0 29965
1 8959
Name: class, dtype: int64
sub.to_csv(sub_file)